Mixed-Signal Design and Automation Methods

混合信号电路设计与自动化方法

Lecture 2 Preliminary for Analog IC Design

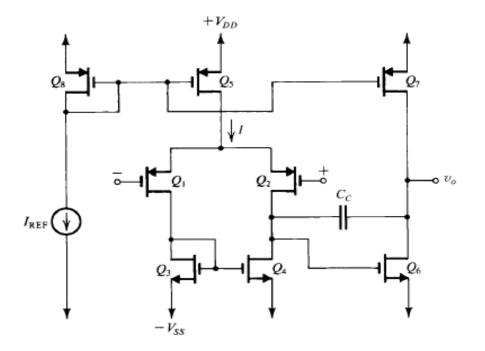
Prof. Guoyong Shi shiguoyong@sjtu.edu.cn Department of Micro/Nano-electronics Shanghai Jiao Tong University Fall 2015

Outline

- Reference books on opamp circuit design
- Building block cells for analog IC
- Transistor model and basic design equations
- Circuit simulation (recommended simulators)

Textbooks (Recommended)

- 1. D.A. Johns and K. Martin, Analog Integrated Circuit Design, NY, Wiley, 1997.
- 2. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
- 3. P.E. Allen and D.R. Holberg, CMOS Analog Circuit Design, 2nd Ed., NY, Oxford university Press, 2002.

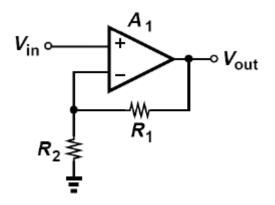

You may find the basic amplifier design information in these popular textbooks.

More Advanced Research Books

For more advanced materials, you may refer to the following books.

- 1. R. Hogervorst, and J.H. Huijsing, Design of Low-voltage, Low-power Operational Amplifier Cells, Kluwer, 1996.
- 2. K.-J. de Langen, and J.H. Huijsing, Compact Low-voltage and Highspeed CMOS, BiCMOS and Bipolar Operational Amplifiers, Kluwer, 1999.
- 3. J. H. Huijsing, Operational Amplifiers, Kluwer, Boston, 2001.
- 4. V. V. Ivanov, I. M. Filanovsky, Operational Amplifier Speed and Accuracy Improvement, Kluwer, Boston, 2004 (folded cascode and current mirror improvements using current amplifiers)

A Basic Opamp


- Differential PMOS input, single output
- Miller compensation

Circuit Basics

- A basic opamp includes
 - Biasing circuit
 - Input stage (differential PMOS transistor stage with differential to single ended conversion, and output stage.
 - Compensation capacitor Cc, and
- The basic parameters of this amplifier:
 - DC gain
 - Bandwidth
 - Slew-rate (SR)
 - Offset and noise referred to the input.

Opamps

- Loosely an opamp is a "<u>high-gain</u> operational amplifier".
- By "high", we mean a value anywhere between 10 to 10⁵ (100dB).
- Opamps are usually used in a feedback system, when an operation must be performed precisely.

Ideal Opamp

- $A_V = inf, R_{in} = inf, R_{out} = 0$
- without considering: power, output swing, and speed.
- Modern opamps are designed for a specific application,
 - often trading unimportant aspects for the important ones.
- e.g., most of today's CMOS opamps have a high output impedance (in open loop)
 - for supplying a current to the load
- they are often called "transconductance amplifiers"
 - i.e. voltage-to-current amplifier (like the effect of gm)

Typical Performance Metrics

- Gain, speed, output swing, linearity, power dissipation;
- Noise, input CM range, supply rejection;
- Input offset voltage V_{os};
- etc.
- All these metrics are related to the transistor-level details.

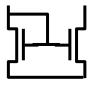
Building Blocks (Cells)

Cell-based Design

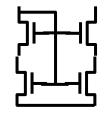
- Just like the design of other electronic circuits,
- the design of opamps can be <u>greatly accelerated</u> if we use a library of simple circuits, sometimes called <u>cells</u>.
- Cell-based design is also a fundamental idea for analog/mixed-signal design automation.

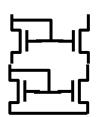
Typical Analog Modules

- Operational amplifiers (opamps, V-to-V, V-to-I);
- OTA Operational Transconductance Amplifiers (Vto-I);
- Comparators (in ADC);
- Oscillators (in RF frontend);
- Voltage references (bandgap)
- Temperature compensation
- Current references
- DC-DC (voltage regulation)

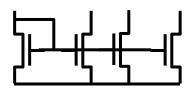

• ...

• Each requiring special design expertise


Example: Basic Analog Building Blocks



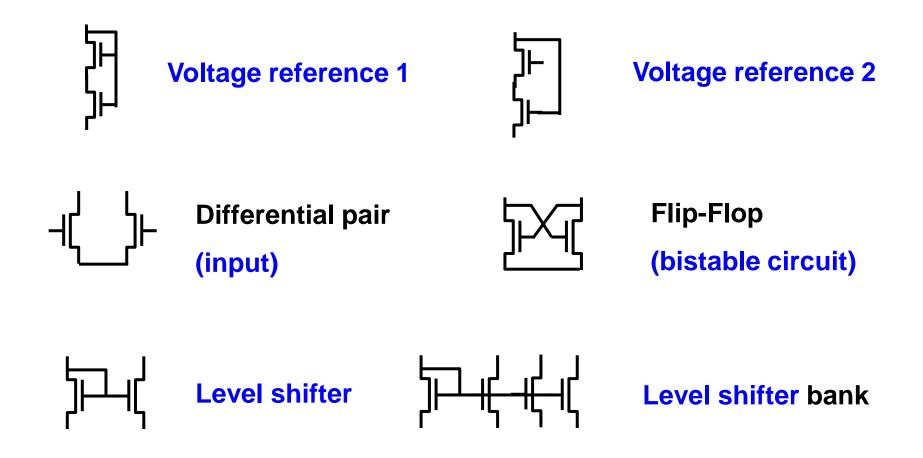
Simple current mirror



4-transistor current mirror (for wide swing)

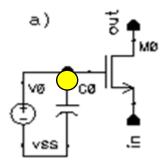
Cascode current mirror

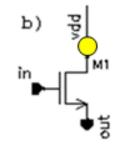
(for higher output impedance)

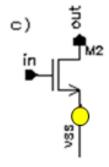


Current mirror bank

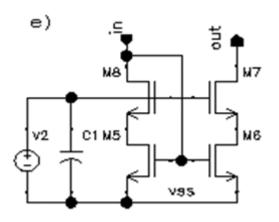
(for current-mode design)

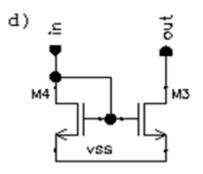



Building Blocks (cont'd)

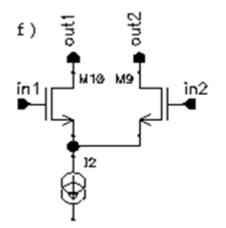

T. Massier, H. Graeb, U. Schlichtmann, "The sizing rules method for CMOS and bipolar analog integrated circuit synthesis," *IEEE Trans. on CAD*, vol. 27, no. 12, pp. 2209 – 2222, 2008.

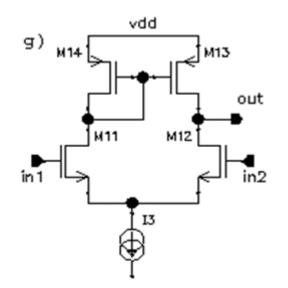
Traditional Cells




Common gate (Gate signal not varying) Common drain (Drain signal not varying)

Common source (Source signal not varying)


Cascoded current mirror



Simple current mirror

Lecture 2

Traditional Cells (cont'd)

Differential pair (differential transconductance amplifier with <u>current</u> as output)

Differential pair with differential input and singleended output

Ambitious Design Goals

Four one-hundreds:

By modifying the basic structure, one can achieve the following performance :

```
100 dB gain, (= 10<sup>5</sup>)
100 dB CMRR, and
100 dB PSRR.
```

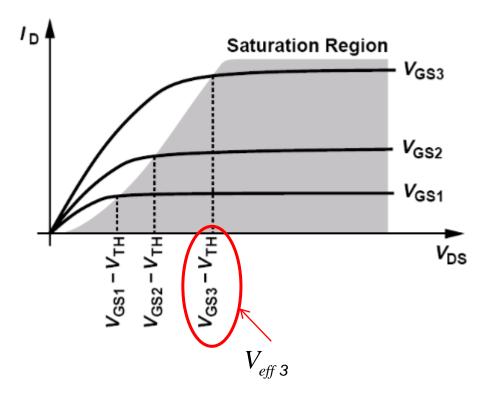
The obtained amplifier has input and output rail-to-rail operation, and is compensated for 100% <u>feedback operation</u> (operating signal range).

Basic Design Equation (I-V)

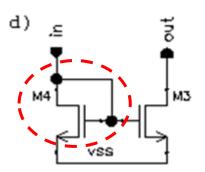
$$I_{D} = \frac{\beta}{2} \Big[2(V_{GS} - V_{T}) - V_{DS} \Big] V_{DS}; \qquad \beta \coloneqq \mu C_{ox} \frac{W}{L} = K_{n,p} \frac{W}{L}$$

$$V_{DS} = (V_{GS} - V_{T}) \triangleq V_{eff}$$

$$I_{D} = \frac{\beta}{2} (V_{GS} - V_{T})^{2} = \frac{\beta}{2} (V_{eff})^{2}$$


$$g_{m} = \frac{\partial I_{D}}{\partial V_{eff}} = \beta V_{eff} = \sqrt{2\beta I_{D}} = \sqrt{2K_{n,p} \frac{W}{L} I_{D}}$$

$$\frac{W}{L} = \frac{g_m^2}{2KI_D}$$


 $g_{\rm m}$ and $I_{\rm D}$ determine the size ratio

 $K = K_{n,p}$

MOS Current-Voltage Characteristics

When $V_{DS} \ge V_{eff}$, I_D is in saturation.

That's why diode connected MOS works in saturation.

$$V_{DS} = V_{GS} \ge V_{GS} - V_T = V_{eff}$$

Circuit Simulation

- I assume all students have experience on HSPICE, at least on PSPICE.
- HSPICE tutorial
- **PSPICE** tutorial (www.orcad.org)
- LTspice (www.linear.com)
 - A simulator by Linear Technology Corp
 - PC version available (download and install by yourself)
 - With mixed-signal functionality

Reference

• I. M. Filanovsky's tutorial slides on MWSCAS 2011.