Mixed-Signal Design and Automation Methods 混合信号电路设计与自动化方法

Lecture 5. Pole/Zero Analysis of Two-Stage Amplifiers

Prof. Guoyong Shi shiguoyong@sjtu.edu.cn School of Micro/Nano-electronics Shanghai Jiao Tong University 2015

Outline

- Small-signal MOS models
- Two-stage opamp small-signal model
- Two-pole analysis
- Deriving poles and zeros by DPI
- Frequency compensation
- Design for phase margin
- Pole/zero intuitions
- Design strategies for zero
 - Canceling the 2nd pole by zero
 - Adding gain to the compensation path

Small-signal MOS Model

MOS Small-Signal Model

- G_m, G_{mb}, and G_o vary with the operation point.
- I_{ds} and V_{sb} are obtained by DC analysis.
- Other parameters are MOS device parameters.

2015-09-05

Level 2 MOS Small-Signal Model

• C_{GSO} and C_{ox} etc. are the MOS device parameter.

$$C_{GS} = C_{GSo} + \frac{1}{2}C_{ox}$$

$$C_{GD} = C_{GDo} + \frac{1}{2}C_{ox}$$

$$C_{SB} = C_{JSB} + \frac{1}{2}C_{JBC}$$

$$C_{DB} = C_{JDB} + \frac{1}{2}C_{JBC}$$

Level 3 MOS Small-Signal Model

Small-Signal Resistances

 $R_1 \approx r_{ds1} \parallel r_{ds3} \mid$ g_{m3} g_{m3} $R_2 = r_{ds2} \parallel r_{ds4}$

$$R_3 = r_{ds6} \parallel r_{ds7}$$

Small-signal model

Parasitic Capacitances

M3 diode connected

$$C_{1} = C_{db1} + C_{gs3} + C_{db3} + C_{gs4}$$
$$C_{2} = C_{db2} + C_{db4} + C_{gs6}$$
$$C_{3} = C_{bd6} + C_{bd7} + C_{L}$$

Small-signal model

Simplified (Cont'd)

Subscripts I, II indicate the stages

$$g_{mI} = g_{m1} = g_{m2};$$

 $g_{mII} = g_{m6};$

 $R_{I} = R_{2} = r_{ds2} || r_{ds4};$ $R_{II} = R_{3} = r_{ds6} || r_{ds7}$

$$C_{I} = C_{2} = C_{gs6} + C_{db2} + C_{db4}$$
$$C_{II} = C_{3} = C_{db6} + C_{db7} + C_{L} \approx C_{L}$$

╋

 V_{out}

slide 11

Assignment 2

- Find the parasitic capacitances for the opamp circuit you used for SPICE simulation in the first assignment.
- Verify that the small-signal model has ac response close to the original circuit.
- Report any problems you have encountered.

Driving Point Impedance (DPI)

DPI-SFG Analysis

dc gain
$$A_0 = (R_I g_{mI})(R_{II} g_{mII})$$
 one zero: $z = \frac{g_{mII}}{C_C}$ rad/s

2015-09-05

Exercise

Derive the expression for zero when a nulling resistor is added in the compensation path.

 $R_C \quad C_C$

Poles

$$D(s) = \left(1 - \frac{s}{p_1}\right) \left(1 - \frac{s}{p_2}\right) = 1 - s \left(\frac{1}{p_1} + \frac{1}{p_2}\right) + \frac{s^2}{p_1 p_2}$$

$$D(s) \approx 1 - \frac{s}{p_1} + \frac{s^2}{p_1 p_2}$$
if $|p_2| >> |p_1|$
(widely separated)

Approximately determine p_1 and p_2 by comparing to the polynomial D(s):

$$D(s) = 1 + s[R_{II}(C_{II} + C_{C}) + R_{I}(C_{I} + C_{C}) + R_{I}R_{II}g_{mII}C_{C}] + s^{2}R_{I}R_{II}[C_{I}C_{II} + C_{C}(C_{I} + C_{II})]$$

-1/p₁ -1/p₁

Finding the Poles

$$D(s) = 1 + s[R_{II}(C_{II} + C_{C}) + R_{I}(C_{I} + C_{C}) + R_{I}R_{II}g_{mII}C_{C}] + s^{2}R_{I}R_{II}[C_{I}C_{II} + C_{C}(C_{I} + C_{II})]$$

$$-1/p_{1} \qquad 1/p_{1}p_{2}$$
(Dominating term)
$$\downarrow \qquad 1/p_{1}p_{2}$$

$$p_{1} = -1/[R_{II}(C_{II} + C_{C}) + R_{I}(C_{I} + C_{C}) + R_{I}R_{II}g_{mII}C_{C}] \approx \frac{-1}{R_{I}R_{II}g_{mII}C_{C}} \qquad \text{(for g_{mII} large)}$$

$$p_{2} \approx \frac{-g_{mII}C_{C}}{C_{I}C_{II} + C_{C}(C_{I} + C_{II})} = \frac{-g_{mII}C_{C}}{(C_{I} + C_{C})C_{II} + C_{C}C_{I}} \approx \frac{-g_{mII}}{C_{II}} \qquad C_{1} >> C_{1}$$

Note that the units of p1, p2 are rad/s

Please take a look what transistors are related to these two poles?

Lecture 5

$$p_2 \approx \frac{-g_{mII}C_C}{C_I C_{II} + C_C (C_I + C_{II})} \approx -\frac{g_{mII}}{C_{II}}$$

$$C_{||} >> C_{C} > C_{|}$$

The **2nd pole** must be greater than GBW. Otherwise the phase margin might not be satisfied.

Frequency Compensation

Gain-Bandwidth Product (GBW)

$$p_{1} = -1/[R_{II}(C_{II} + C_{C}) + R_{I}(C_{I} + C_{C}) + R_{I}R_{II}g_{mII}C_{C}] \approx \frac{-1}{R_{I}R_{II}g_{mII}C_{C}}$$

$$A_0 = (R_I g_{mI})(R_{II} g_{mII}) \qquad \text{(dc gain)}$$

$$\Box SBW = A_0 |p_1| = \frac{(R_I g_{mI})(R_{II} g_{mII})}{R_I R_{II} g_{mII} C_C} = \frac{g_{mI}}{C_C} = \frac{g_{mI}}{C_C}$$

$$GBW = \frac{g_{m1}}{C_C}$$

2015-09-05

Zero & Poles

2015-09-05

Lecture 5

Phase Margin

Open-loop transfer function H(s):

$$H(s) = \frac{A_0(1 - s / z)}{(1 - s / p_1)(1 - s / p_2)} \qquad z > 0; \qquad p_{1,2} < 0$$

Phase:

$$\measuredangle H(s) = \measuredangle (1 - s / z) - \measuredangle (1 - s / p_1) - \measuredangle (1 - s / p_2)$$

= $\varphi_z - \varphi_{p_1} - \varphi_{p_2} \in (0^\circ, -180^\circ)$

$$s = j\omega_T = jGBW$$

Suppose you want at least 45° phase margin:

$$\varphi_z - \varphi_{p1} - \varphi_{p2} > -180^\circ + 45^\circ = -135^\circ$$

$$-\varphi_{z} + \varphi_{p1} + \varphi_{p2} < 135^{\circ}$$

$$\tan^{-1} \frac{\omega_{T}}{z} + \tan^{-1} \frac{\omega_{T}}{|p_{1}|} + \tan^{-1} \frac{\omega_{T}}{|p_{2}|} < 135^{\circ}$$

$$(The zero could be + or -.$$

$$A + zero worsens PM. Hence, called
"non-minimum phase zero".)
$$2015-09-05 \qquad \qquad Lecture 5$$$$

slide 23

Design for Phase Margin

Placement of zero

Phase Marge (Alternative)

Alternatively, you may use other estimates to place the 2nd pole.

For example, the CL also affects p2, hence the phase margins.

Pole/Zero Intuitions

- Dominant pole
- Miller theorem

The Dominant Pole

The dominant pole (p1) only depends on R_I, R_{II}, g_{mII}, and C_C, which is the pole of the following small-signal circuit:

2015-09-05

Lecture 5

Approximate Treatment

• At DC:

$$V_{out} = R_{II} g_{II} V_2$$

 This circuit has a zero. Before reaching zero (ωCc < gm6), the voltage drop at Cc dominates the output.

$$V_{out} = V_2 + \frac{I_G}{sC_C} \approx \frac{I_G}{sC_C}$$

One-pole Model

$$R_{II}g_{m6}V_2 = \frac{I_G}{sC_C}$$

 Z_G : impedance seen by I_G

Lecture 5

Derive the exact voltage transfer function by the DPI method.

$$\frac{V_o}{V_1} = \frac{(R_{II}g_{m6})[1 - s(C_C / g_{m6})]}{1 + sC_C (R_I + R_{II} + R_I R_{II} g_{m6})}$$

Has a zero z and a pole p, |z| > |p|.

Dominant Pole

Miller Theorem

Redistributing the feedback admittance to the two terminals

2015-09-05

Lecture 5

Intuition of the 2nd Pole

At high freq, Cc is roughly short circuited, M6 is almost *diode connected*.

The Mirror Pole

2015-11-06

Lecture 5

Mirror Pole (cont'd)

Consider transfer from v_{in} to v_2 .

2015-09-05

Zero Intuition

Zero always arises from superposition of multiple paths from the input to output.

2015-09-05

Lecture 5

slide 38

The Issue of Zero

A positive zero **boosts the magnitude** but **lags the phase**,

– i.e., adding negative phase to reduce the phase margin

Design Guide: If the **zero is caused by two paths**, <u>try to eliminate</u> <u>one path</u>.

Design Strategies for Zero

- Adding buffer to compensation path
- Adding output resistance of buffer
- Adding nulling zero

Adding buffer to break the compensation path

The **poles** are approximately **unchanged** (as if <u>no buffer</u> <u>has been inserted</u>).

Pole Analysis

slide 42

Strategy 2

Adding output resistance to buffer (R_b)

A new pole appears at

$$p_4 \approx \frac{-1}{R_b C_1 C_2 / (C_1 + Cc)}$$

and additional LHP zero at

$$z_2 = \frac{-1}{R_b C c}$$

The **nulling resistor** placed in series with Cc can eliminate the RHP zero or move it to the LHP.

Exercise

Exercise: Derive poles-zeros for this circuit.

Strategy 3: Nulling Resistor

$$\frac{V_{out}}{V_{in}} = \frac{a\left\{1 - sCc\left[1/g_{m2} - R_z\right]\right\}}{1 + bs + cs^2 + ds^3}$$

Exercise

Exercise: Derive the poles/zeros by DPI analysis.

 $\frac{V_{out}}{V_{in}} = \frac{a\{1 - sCc[1/g_{m2} - R_z]\}}{1 + bs + cs^2 + ds^3}$

where the coefficients are:

It becomes a 3rd order system

$$a = g_{mI} g_{mII} R_I R_{II}$$

$$b = (C_{II} + C_C)R_{II} + (C_I + C_C)R_I + g_{mII}R_IR_{II}C_C + R_zC_C$$

Note: subscripts I, II indicate stages 1 and 2.

denominator

$$c = R_I R_{II} (C_I C_{II} + C_C C_I + C_C C_{II}) + R_z C_C (R_I C_I + R_{II} C_{II})$$
$$d = R_I R_{II} R_z C_I C_{II} C_C \quad \longleftarrow \quad (3^{rd} \text{ order coeff})$$

2015-09-05

Lecture 5

Poles and Zero with nulling Rz

Assume **Rz is less than R_I or R_{II}** and the **poles are widely spaced**, then the roots are

$$p_1 = \frac{-1}{(1 + g_{mII} R_{II}) R_I C_C} \approx \frac{-1}{R_I C_C (g_{mII} R_{II})}$$

Exercise: Derive the poles and zero.

$$p_{2} = \frac{-g_{mII}C_{C}}{C_{I}C_{II} + C_{I}C_{C} + C_{II}C_{C}} \approx \frac{-g_{mII}}{C_{II}}$$

$$p_3 =$$
mirror pole

$$p_{4} = \frac{-1}{R_{z}C_{I}} \qquad \qquad z_{1} = \frac{1}{C_{C}\left(\frac{1}{g_{mII}} - R_{z}\right)} \approx \frac{1}{-C_{C}R_{z}} \qquad \left(\text{if } g_{mII}R_{z} \gg 1\right)$$

Conceptual Illustration

Assuming $g_{m6} = g_{m11}$, we get the zero as

$$z_1 = \frac{1}{C_C (1 / g_{mII} - R_z)}$$

Lecture 5

Zero Cancellation

If we place **z1** = **p2**, i.e., let **the zero cancel the 2nd pole**.

$$\square R_z = \frac{(C_C + C_{II})}{g_{mII}C_C}$$

With **p2 canceled**, the remaining roots **are p1 and p4 (p4 due to Rz)**. For unity-gain stability, it is required that

$$|p_4| > GBW = A_0 |p_1| = \frac{A_0}{g_{mII}R_IR_{II}C_C} = \frac{g_{mI}}{C_C} \qquad \square > \qquad |p_4| = \frac{1}{R_zC_I} > \frac{g_{mI}}{C_C} = GBW$$

Zero Cancellation (cont'd)

$$R_{z} = \frac{(C_{C} + C_{II})}{g_{mII}C_{C}} \approx \frac{(C_{II})}{g_{mII}C_{C}}$$
$$C_{II} \gg Cc$$

$$\frac{1}{R_z C_I} > \frac{g_{mI}}{C_c} = GBW$$

 $C_C > \sqrt{\frac{g_{mI}}{g_{mII}}} C_I C_{II}$

This procedure gives excellent stability for a fixed value of C2 (\approx CL).

Unfortunately, as **CL changes**, so does p2. Hnce, the zero must be **adjusted** to cancel p2.

Pushing p2 Farther

The magnitude of the **output pole (p2)** can be increased by **introducing gain in the feedback path of Miller capacitor (Cc)**.

Small-Signal Model

(cont'd)

The resistors R_{I} and R_{II} are defined as

$$R_{I} = \frac{1}{g_{ds2} + g_{ds4} + g_{ds12}} \approx \frac{1}{3g_{ds}} = \frac{r_{ds}}{3};$$

$$R_{II} = \frac{1}{g_{ds6} + g_{ds7}} \approx \frac{1}{2g_{ds}}$$

Assuming all the channel resistances are equal to r_{ds}.

Small-Signal Analysis

2015-09-05

Lecture 5

slide 54

Conceptual Interpretation

Remark: The **common gate M**₈ stops the feedforward path, **preventing the occurrence of an RHP zero**.

 $z = -\frac{g_{m8}}{C_C}$

2015-11-06

Lecture 5

Design Attempt (Assignment 3)

- Please attempt to modify the circuit structure of the 2-stage Miller-compensated opamp using the techniques learned in this lecture.
- You may attempt to use one or two techniques introduced in this lecture.
- Describe your attempts clearly in your turn-in.
- Most likely your new design will fail ...
- Then try to analyze why your new design fails, what are the main reasons you guess?
- In case you have observed improvement; try to analyze why and how such improvement is achieved.
- Feel free to use the AICE tool.
- You are allowed to form 2~3 students as a working group by submitting one report.

References

- P. E. Allen's lecture, ECE 6412, Analog Integrated Circuit Design –II, Georgia Tech, 2002.
- B. K. Ahuja, "An improved frequency compensation technique for CMOS operational amplifiers," IEEE J. of Solid-State Circuits, vol. SC-18, no. 6, Dec. 1983, pp. 629-633.
- G. Palmisano and G. Paumbo, "A compensation strategy for two-stage CMOS opamps based on current buffer," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, no. 3, pp. 257–262, Mar. 1997.*
- J. Mahattanakul and J. Chutichatuporn, "Design procedure for twostage CMOS opamp with flexible noise-power balancing scheme," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 52, no. 8, pp.* 1508– 1514, Aug. 2005.
- J. Mahattanakul, "Design procedure for two-stage CMOS operational amplifiers employing current buffer," IEEE Trans. on CAS – II: Express Briefs, vol. 52, no. 11, Nov. 2005.