Mixed-Signal Design and Automation Methods 混合信号电路设计与自动化方法

Lecture 6 Opamp Sizing (Part 1: Traditional Method)

Prof. Guoyong Shi shiguoyong@ic.sjtu.edu.cn Dept of Micro/Nano-electronics Shanghai Jiao Tong University 2015

Outline

- Performance targets
- Sizing targets
- Opamp design procedure
 - Empirical procedure for manual sizing
- Techniques for enhancing GBW
 - Nulling resistor
 - Voltage buffer
 - Current buffer
- Sizing with voltage/current buffers

Reference Paper

- This lecture was mainly based on the following paper:
- G. Palmisano, G. Palumbo, and S. Pennisi, "Design procedure for twostage CMOS transconductance operational amplifiers: a tutorial," Analog Integrated Circuits and Signal Processing, vol. 27, pp. 179-189, 2001.

Motivation

- Transistor sizing is one of the most difficult design stages to automate ;
- Sizing involves <u>large / highly non-linear design</u> <u>space</u>.
- So far, <u>No</u> fully automatic analog sizing tools are available for used either in industry or classroom.
- With manual design, design space exploration in the transistor weak and moderate inversion regions becomes even harder.

List of Performance Targets

- Noise
- Phase margin (PM or M_{ϕ})
 - If (M_{ϕ}) is not given, then minimize the settling time.
- Gain-Bandwidth Product (GBW)
- Load capacitance (C_L)
- Slew rate (SR)
- Input Offset Voltage
- Input Common Mode Range (CMR)
- Output Swing (OS)
- Common Mode Rejection Ratio (CMRR)
- Power Supply Rejection Ration (PSRR)

Not optimized during the manual design stage

Comments on CMRR/PSRR

- Design parameters such as dc gain, CMRR and PSRR
 - depend on the MOS output resistance (rds);
 - They are not easily modeled for hand analysis.
- These parameters highly depend on the amplifier topology.
 - For a <u>two-stage</u> opamp, typical dc gain in the range of 60-80dB (1,000x to 10,000x).
 - CMRR in the rage of 70-90dB.
 - They are predicted mainly by SPICE simulation <u>using</u> accurate transistor models.

- Biasing current
- Inversion levels
- Aspect ratios (W/L) of all transistors
- Compensation resistor (Rc) / capacitor (Cc)

Palmisano, Palumbo and Pennisi (2001).

Two-stage Opamp

Two-stage opamp (nMOS input)

Our working circuit in this course (2015)

Noise in Transistor

<u>Useful Lemma</u>: The given two circuits are equivalent if $\overline{V_n^2} = \overline{I_n^2} / g_m^2$

Noise of Input Stage

Input referred noises (@ gate of M1):

1) Due to M3:

$$\overline{i_{n3}^2} = 4kT \frac{2}{3} g_{m3} \quad \longrightarrow \quad \overline{v_{n1\leftarrow 3}^2} = \frac{i_{n3}^2}{g_{m1}^2} = 4kT \frac{2}{3} \frac{g_{m3}}{g_{m1}^2}$$

2) Due to M1:

$$\overline{i_{n1}^2} = 4kT\frac{2}{3}g_{m1} \implies \overline{v_{n1}^2} = \frac{\overline{i_{n1}^2}}{g_{m1}^2} = 4kT\frac{2}{3}\frac{1}{g_{m1}}$$

Total IRN (two branches, doubled):

$$S_{n}(f) = 2 \times 4kT \frac{2}{3} \frac{1}{g_{m1,2}} \left(1 + \frac{g_{m3,4}}{g_{m1,2}} \right)$$

Lecture 6 Sizing

2015-11

Design Procedure (by Palmisano et al.)

Step 1) Start from the <u>noise requirement</u>.

Neglecting the flicker noise at low frequency, the input noise voltage spectral density is given by

$$S_n(f) = 2 \times 4kT \frac{2}{3} \frac{1}{g_{m1,2}} \left(1 + \frac{g_{m3,4}}{g_{m1,2}} \right)$$
(1)

To minimize noise, we assume (by sizing) $g_{m3,4} \ll g_{m1,2}$ so that (1) is approximated by

$$g_{m1,2} \approx \frac{16}{3} \frac{kT}{S_n(f)}$$
 $(g_{m3,4} \ll g_{m1,2})$ \square So, noise spec
determines $g_{m1,2}$

The low frequency flicker noise can be lowered by increasing L and W of M1 and M2 (the input pair).

Compensation Capacitor (Cc)

Step 2) The compensation capacitor (Cc) is determined by $g_{m1,2}$ and the GBW requirement:

$$\omega_T = \frac{g_{m1,2}}{C_C} \qquad \qquad \square \searrow \qquad C_C = \frac{g_{m1,2}}{\omega_T} = \frac{g_{m1,2}}{2\pi f_T}$$

Slew Rate

- **Step 3)** The slew rate depends on two part:
- -- the slew at the output node of the 1st stage (internal slew rate)
- -- and slew at the output node of the 2nd stage (external slew rate).

The slew rates are related to the quiescent currents $I_{D1,2}$ (input stage) and I_{D8} (output stage) :

$$SR_{\text{int}} = \frac{2I_{D1,2}}{C_C} = \frac{I_{D7}}{C_C}; \qquad SR_{ext} = \frac{I_{D8} - I_{D7}}{C_L}$$
(internal) (external)

In practice, we would set both internal and external SR's \geq target SR. However, at the beginning let us set: SR_{int} = SR_{ext} = SR.

SR (cont'd)

which determines the current ratio between $I_{D8} \& I_{D7}$.

Sizing M1,2

Step 4) Size the input transistors.

$$\frac{W}{L} = \frac{g_m^2}{2K_{n,p}I_{DSAT}}$$

 $g_{\rm m}$ and $I_{\rm D}$ determine the size ratio

Recall that gm1,2 was determined by the noise spec.

Lecture 6 Sizing

16

Phase Margin

Step 5) Determine the phase margin.• For 2-stage amplifier, the first two
poles, p_1 and p_2 can
approximately characterize the
frequency behavior. $A_0 \uparrow$ Two-pole approximation of the

open-loop H(s):

$$H(s) = \frac{A}{\left(1 - \frac{s}{p_1}\right)\left(1 - \frac{s}{p_2}\right)}$$
$$\longrightarrow H(j f_u) = \frac{A}{\left(1 + \frac{jf_u}{f_1}\right)\left(1 + \frac{jf_u}{f_2}\right)}$$

Phase Margin (cont'd)

For PM > 45°, we may approximate $f_u = GBW$.

2015-11

Phase Margin and Poles

The phase margin (PM) is given by:

Step 6) Determine gm5, then the size of M5.

G. Palmisano and G. Palumbo, "A novel representation for two-pole feedback amplifiers," IEEE Trans. on Education, vol. 41, no. 3, Aug. 1998, pp. 216-218.
 2015-11 Lecture 6 Sizing

Compensation Capacitor (Cc)

The "separation factor" χ :

$$\chi \triangleq \tan \phi_m = \frac{f_2}{GBW} = \frac{f_2}{f_u}$$
 (

(holds for $PM > 45^{\circ}$)

Recall the 2nd pole & GBW:

$$f_2 = \frac{g_{m5}}{2\pi C_L},$$

$$f_u = \frac{g_{m1,2}}{2\pi C_C}$$

$$\chi = \frac{f_2}{f_u} = \frac{g_{m5}}{g_{m1,2}} \frac{C_C}{C_L}$$

$$C_C = \chi \frac{g_{m1,2}}{g_{m5}} C_L$$

Use the separation factor to determine Cc

Step 7): Choose a separation factor χ (say, 2) to determine Cc.

Sizing M5

Since $I_{D5} = I_{D8}$, the size of M5 is given by

 I_{D7} & I_{D8} were determined by SR (step 3). $\left(\frac{T}{L}\right)_5 = \frac{2}{2L}$

Design for Better Bandwidth

With the previous method, the maximum achievable GBW is limited by the 2nd pole $p_2 = -g_{m5}/C_L$, which depends on the load capacitor CL.

To achieve a higher GBW, a very high g_{m5} is required.

Optimize GBW with minimum change of the remaining electrical parameters.

Nulling Resistor

The left half-plane (LHP) zero introduced by the nulling resistor Rc is

$$f_{Z} = \frac{1}{2\pi} \frac{g_{m5}}{(1 - g_{m5}R_{C})C_{C}}$$

Setting $R_c = 1/g_{m5}$ pushes the RHP zero to infinity.

Further increasing Rc flips over the zero into LHP.

Pole-zero Cancellation

$$f_{z} = \frac{1}{2\pi} \frac{g_{m5}}{(1 - g_{m5}R_{z})C_{z}} = f_{2} = -\frac{g_{m5}}{2\pi C_{L}}$$
(1)

We shall determine C_z and R_z .

Insertion of the nulling resistor (R_c) results in the new (3rd) pole:

$$f_3^{new} = \frac{1}{2\pi R_z C_I}, \qquad C_I = C_{db2} + C_{db4} + C_{gs5}$$

Cap load of 1st stage

Again, define the new separation factor

$$\chi = \frac{f_3^{new}}{f_{GBW}} = \frac{C_C}{g_{m1,2}R_C C_I} \qquad (2$$

Lecture 6 Sizing

2015-11

Pole-Zero Cancellation (cont'd)

Zero cancels the old 2nd pole:

Nulling Resistor (cont'd)

The compensation capacitor (with R) is named Cz; that without R is named Cc. If choosing Cz < Cc, we might be able to achieve higher GBW.

Choosing this separation factor will help achieve a higher GBW.

2015-11

Sizing with compensation for Eliminating the RHP Zero

Voltage buffer compensation & current buffer compensation.

Closed-loop Stability

- For two-stage opamps, adding the Miller capacitor Cc results in the pole-splitting phenomenon which improves the closed-loop stability significantly.
- However, the Miller capacitor also creates a feedforward path which leads to a RHP zero.
- Such a zero can be relocated by connecting a series nulling resistor, or
- Connecting a common-gate current buffer (Mahattanakul, 2005), etc.

J. Mahattanakul, "Design procedure for two-stage CMOS operational amplifiers employing current buffer," IEEE Trans. CAS-II: Express Briefs, vol. 52, no. 11, Nov. 2005, pp. 766-770.

Voltage/Current Buffer Compensation

Modification by adding voltage buffer (VB)

Modification by adding current buffer (CB)

Sizing with Voltage Buffer

VB breaks the compensation path into indirect connection, eliminating a possible zero path.

The buffer transistor M9 has an output resistance 1/g_{0,9}.

The compensation path introduces a LHP zero at

$$f_z = -\frac{g_{o,M9}}{2\pi C_{CV}}$$
 cf. the prev
lecture

We may let this zero cancel the 2nd pole:

$$\frac{g_{m5}}{C_L} = \frac{g_{o,M9}}{C_{CV}}$$

Cancelling the 2nd pole (cont'd)

$$\frac{g_{m5}}{C_L} = \frac{g_{o,M9}}{C_{CV}}$$
(1)

This equation has two unknowns: $g_{o,M9}$ and C_{CV} .

Second, we derive the new 2nd pole after inserting the VB:

$$f_2^{new} = \frac{g_{o,M9}}{2\pi C_{eq}}$$

$$C_{eq} = C_I + C_{gs9V} \approx C_I$$

$$C_I \text{ is the capacity of the set of the capacity of the set of the capacity of the set of the$$

C_I is the 1st stage output capacitance

Now new GBW becomes

New separation factor

$$f_{GBW}^{new} = \frac{g_{m1,2}}{C_{CV}} \qquad \Box$$

$$\chi = \frac{f_2^{new}}{f_{GBW}^{new}} = \frac{g_{o,M9}C_{CV}}{g_{m1,2}C_{eq}}$$
(2)

2015-11

VB (cont'd)

Use equations (1), (2) to solve:

Ccv approximately equals to Cz derived before for nulling resistor compensation

Another paper that presents sizing for VB compensation

Sizing with VB Compensation

P. Mandal and V. Sisvanathan, "Macromodeling of the AC characteristics of CMOS op-amps," Proc. IEEE/ACM ICCAD, pp. 334-340, **1993**.

2015-11

Sizing all transistors into saturation ...

Assume that the body effect parameters (λ_i 's) and the bias voltages are independent of the transistor widths.

DC gain:

$$A_{0} \approx \frac{g_{m1}g_{m6}}{(g_{ds1} + g_{ds3})(g_{ds6} + g_{ds7})} \approx K \sqrt{\frac{W_{1}W_{6}}{W_{5}W_{7}}} \\ \bigwedge K = \mu C_{ox}$$

The output resistances of gds3, gds6 are proportional to the drain currents of M5 & M7, respectively.

DC Gains (more details)

$$g_m v_{in}$$

Dominant Pole

Sizing

The $I_{D,3}$ is half $I_{D,5}$; and the drain currents of $I_{D,6} = I_{D,7}$ are equal.

It follows that:

$$\frac{\left(\frac{W}{L}\right)_{3}\left(1-\lambda_{p}V_{ds,3}\right)}{\left(\frac{W}{L}\right)_{6}\left(1-\lambda_{p}V_{ds,6}\right)} = \frac{\frac{1}{2}\left(\frac{W}{L}\right)_{5}\left(1+\lambda_{n}V_{ds,5}\right)}{\left(\frac{W}{L}\right)_{7}\left(1+\lambda_{n}V_{ds,7}\right)}$$

Assume:

2015-11

Other mentioning of the literature

Sizing for Current Buffer Compensation

According to (Palmisano and Palumbo,1997), the optimal GBW is achieved by

$$g_{m9C} = 2g_{m1,2};$$

$$C_{CC} \approx \sqrt{\frac{g_{m1,2}}{g_{m5}}} \left(\frac{2K-1}{2+K} + \frac{1}{2}\right) C_L C_I$$
$$K = \mu C_{ox}$$

Current buffer

Also called common gate current buffer Miller compensation (CBMC)

G. Palmisano and G. Palumbo, "A compensation strategy for two-stage CMOS opamps based on current buffer," IEEE Trans. on CAS-I, vol. 44, no. 3, pp. 257-262, March 1997.

2015-11

Caution on Doublet

* The issue of doublet is discussed in another lecture.

Doublet Issue (cont'd)

The doublet-pole frequency is approximately (verify?) at

$$f_{db} \approx \frac{g_{m3,4}}{2\pi 2C_{gs4}}$$

The new GBW is approximately given by (cf. Palmisano and Palumbo, 1999):

$$f_{GBW}^{new} \approx \frac{2f_2 f_{db}^2}{\chi f_{db} (f_{db} + f_2)}$$

The new compensation capacitor can be calculated by:

$$C_{C,new} \approx \frac{f_{GBW}C_C}{f_{GBW}^{new}}$$

G. Palmisano and G. Palumbo, "Analysis and compensation of two-pole amplifiers with a pole-zero doublet," IEEE Trans. on CAS-I, vol. 46, no. 7, pp. 864-868, July 1999.

2015-11

Paper Reading

The following paper is recommended for reading

- J. Mahattanakul, "Design procedure for two-stage CMOS operational amplifiers employing current buffer," IEEE Trans. CAS-II: Express Briefs, vol. 52, no. 11, Nov. 2005, pp. 766-770.
- containing detailed small-signal analysis and sizing info.

References

- P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. Oxford University Press, Oxford, 2002.
- B. K. Ahuja, "An improved frequency compensation technique for CMOS operational amplifiers," IEEE J. Solid-State Circuits, vol. SC-18, no. 3, pp. 629–633, Jun. 1983. (original proposal of the current buffer technique, but lacks detailed analysis)
- G. Palmisano, G. Palumbo, and S. Pennisi, "Design procedure for two-stage CMOS transconductance operational amplifiers: a tutorial," Analog Integrated Circuits and Signal Processing, vol. 27, pp. 179-189, 2001. (introduced in this lecture)
- G. Palmisano and G. Palumbo, "A novel representation for two-pole feedback amplifiers," IEEE Trans. on Education, vol. 41, no. 3, Aug. 1998, pp. 216-218.
- J. Huijsing, R. Hogervorst, and K. de Langen, "Low-power low-voltage VLSI operational amplifier cells," IEEE Trans. on Cicruits and Systems II, vol. 42, pp. 841-852, Nov. 1995.
- G. Palmisano, G. Palumbo, and R. Salerno, "CMOS output stages for low voltage power supply," IEEE Trans. on CAS II, vol. 47, no. 2, pp. 96-104, Feb. 2000.

Appendix