Mixed-Signal Design and Automation Methods 混合信号电路设计与自动化方法

Lecture 8 gm/ID Sizing Method

Prof. Guoyong Shi shiguoyong@sjtu.edu.cn **Dept of Micro/nano-electronics**

Shanghai Jiao Tong University

Fall 2015

Preface

- This lecture was based on the following paper:
 - F. Silveira, D. Flandre, and P. G. A. Jespers, "A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA," *IEEE J. Solid-State Circuits, vol. 31, pp.* 1314–1319, Sep. 1996.

Outline

- Intrinsic gain stage
- gm/ID in different regions
- gm/ID versus normalized current (ID/(W/L))
- gm/ID sizing procedure
- Experimental result
- SOI technology for low-power circuits
- Summary

Tradeoff btw Power & Speed

- CMOS analog circuits traditionally work in strong inversion (saturation)
- Weak inversion region → <u>minimum power</u> consumption; but <u>slow</u>
- Moderate inversion → good compromise in power and <u>speed</u> (future design interest)
- Design challenges:
 - Requiring both low <u>power</u> and high <u>speed</u>

Traditional Design Methodology

- Traditional optimization approaches
 SPICE plus numerical optimization software
 - Disadvantage: <u>lack of design insights</u>
- Main stream methods emphasize "strong inversion";
- Micropower design techniques exploit known "weak inversion" models.
- Symbolic or simple hand-calculation methods → better insights,
 - But lack simple and accurate hand models for <u>moderate</u> <u>inversion</u>

The gm/ID Methodology

- One single model that works in <u>all operation regions</u>.
- Focused on g_m/l_D ratio versus the <u>normalized current</u> l_D/(W/L)
 - the normalized current I_D/ (W/L) is characterized experimentally
 - or fitted with simple analytical models

 Helps design in <u>moderate inversion</u> for <u>low-power</u> <u>circuits</u>

- Offering good compromise between speed and power.;
- power lower but speed not bad!

Motivation of gm/ID

- gm/ID is a measure of the <u>efficiency</u> to translate current (i.e., power) into gm (i.e., gain).
 - The greater gm/ID, the greater gm is for a fixed ID.
 - gm/ID is interpreted as a measure of the "gm enhancement efficiency".
- It is strongly related to the performance of analog circuits.
- It also gives an indication of the <u>device operating</u> region.
- It can be used for transistor sizing.

Intrinsic Gain Stage (I.G.S.)

The common source transistor M is in saturation

The equivalent small-signal circuit

GBW

Gain-Bandwidth Product (GBW)

$$V_{out}(s) = H(s)V_{in}(s)$$

DC gain:
$$g_m v_{in} = -g_d v_{out}$$
 \longrightarrow $H_{DC} = H(0) = \frac{v_{out}}{v_{in}} = -\frac{g_m}{g_d}$

High freq gain:

$$g_m v_{in} = -j\omega C v_{out}$$
 $\langle \neg \rangle$ $H(j\omega) = \frac{v_{out}}{v_{in}} = -\frac{g_m}{j\omega C}$

• At high frequencies, most of the current flows by the capacitor C.

2015-12

Lecture 8 gm/ID

Channel Length Modulation

2015-12

Lecture 8 gm/ID

Calculation of gm/ID

The expression for gm/ID is derived as follows:

The derivative is maximum in the weak inversion (WI) region where the dependence of I_D versus V_G is exponential.

$$I_D = I_0 \exp\left(\frac{V_G}{nU_T}\right)$$

$$\ln\left(\frac{I_D}{I_0}\right) = \frac{V_G}{nU_T}$$

Lecture 8 gm/ID

Quadratic MOS Models

The connections between ID, the W/L ratio, and gm can be derived from the transistor large-signal model.

The classical MOS model is defined for the three regions:

- 1) Strong inversion region (Quadratic Model):
 When V_{ov} = (V_G-V_{th}) > 0.2V.
- 2) Moderate inversion region;

3) Weak inversion region: Once the current approaches $I_{D,min}$ (see the lecture on EKV), W/L must be increased fastly to further increase the DC gain.

Quadratic model in Strong Inversion

The quadratic expression of ID for a MOS transistor in saturation:

We also have

$$g_m = \sqrt{\frac{2\beta I_D}{n}} = \frac{\beta}{n} (V_G - V_{th}) \quad \Box \searrow \quad \frac{g_m}{I_D} = \frac{2}{(V_G - V_{th})}$$

Indep. of (W/L)

ID is proportional to β (hence W), so is gm.

Lecture 8 gm/ID

(cont'd)

$$\frac{g_m}{I_D} = \sqrt{\frac{2\mu C_{ox}}{n}} \frac{1}{\sqrt{I_D/\frac{W}{L}}}$$

gm/ID is inversely proportional to the sqrt of the normalized ID.

$$A_{DC} = \frac{g_m V_A}{I_D}$$

(derived for the Intrinsic Gain Stage)

- It seems that the <u>DC gain</u> would increase to <u>infinite</u> as the drain current goes to 0.
- However, as the current diminishes, the transistor enters moderate and weak inversion, where the <u>quadratic model</u> for the drain current fails.

Weak Inversion

The drain current in weak inversion is given by the exponential I-V relation:

where n is the subthreshold slope factor and U_T the thermal voltage.

In <u>weak inversion</u>, the drain current ID alone determines gm, which in turn determines the GBW.

$$GBW = 2\pi f_T = \frac{g_m}{C}$$
 (for I.G.S.)

Lecture 8 gm/ID

Moderate Inversion Region

The candidate model for moderate inversion is (see Jespers 2010, Chapter 4):

$$\frac{W}{L} = \frac{ng_{m}^{2}}{2\mu C_{ox}} \frac{1}{(I_{D} - I_{D,\min})}$$

The expression is valid in all regions, from strong to weak inversion.

Exercise: Design an I.G.S. with

- load C = 1 pF;
- transition frequency $f_T = 100 \text{ MHz}$;
- $\mu C_{ox} = 4x10^{-4} \text{ AV}^2$;
- slope factor n = 1.2;
- Early voltage $V_A = 10V$.

Plot of aspect ratio W/L vs ID of an (ideal) Intrinsic Gain Stage. The numbers besides the RED circles show the *Overdrive Gate Voltage* $V_{ov} = (V_G - V_{th}).$

W/L versus ID (See comments next page)

22

Comment on the Figure

We see that the DC gain varies like the reciprocal of I_D;
 → Smaller drain current, larger DC gain.

The largest DC gain is arrived at when ID reaches the minimum I_{D,min}.

The DC gain is approximated by the equation considering Early voltage:

$$A_{DC} = -\frac{g_m}{I_D} V_A$$

When $I_D = I_{D,\min} = g_m n U_T$

→ the max DC gain:

$$A_{DC,\max} = -\frac{V_A}{nU_T}$$

The thin-film SOI transistors (n=1.1) has increased subthreshold slope (due to smaller n), giving a maximum value of gm/ID of about 35 while only 25 for bulk transistors (n=1.5).

Calculated and measured gm/ID vs ID/(W/L) for bulk transistors and thin-film fully-depleted SOI transistors.

2015-12

Lecture 8 gm/ID

Observations

- gm/ID <u>decreases</u> when the normalized ID moves toward the strong inversion region.
- For the same gm/ID, $I_{\Box,p}$ is lower than $I_{\Box,n}$ due to the mobility difference.
 - Hence, requiring larger W/L for pMOS to achieve an equal ID.
- Hence, gm/ID is also an *indicator* of the transistor operation region.
- Both gm and ID are proportional to size;
- but gm/ID is size independent.
- Once any two values among gm/ID, gm, and ID are given, we can determine the aspect ratio W/L.

gm/ID vs normalized current

- The <u>normalized current</u> (I_□ = ID/(W/L)) is independent of the transistor size.
- The relationship between gm/ID and I_□ is <u>a unique</u> <u>characteristic</u> for one type of transistors.
 - However, this statement has to be revised when dealing with short channel transistors.
- The actual gm/ID vs I can be obtained by either analytical method (fitting) or measurement.

gm/ID Characterization

- Two characterization methods: <u>semi-empirical</u> or <u>model-driven</u>.
- 1) Semi-empirical: it makes use of real measurements or data derived from advanced MOS models.
- 2) Model-based: it applies simple models with reliable analytical expression.
 - The basic EKV model is a candidate but not perfect;
 - The EKV parameters are allowed to vary with bias conditions and gate lengths.

gm/ID Characterization

- In order to take into account of process variations,
- it is more appropriate to consider averaged curves which are representative of a large number of transistors

Accurate Reference Models

- **BSIM** is a widely used state-of-the-art model available in the public domain.
 - It is based on threshold voltage formulations;
 - But has weaknesses (model inaccuracy) in moderate inversion.
- PSP model from <u>Penn State University</u> and <u>Philips</u> (now NXP) is considered the more accurate industrial standard.
 - Based on the surface potential model (like the Charge Sheet Model of EKV).

gm/ID Sizing Procedure

gm/ID Sizing Procedure

We derived from the quadratic model:

$$\frac{g_m}{I_D} = \frac{2}{V_{GS} - V_{th}}$$

→ (gm/ID) is independent of the gate width (W)

•Determine g_m according to (GBW = f_T): $g_m = 2$

•Determine I_D by the const gm/ID equation:

 $g_m = 2\pi f_T C$ $I_D = g_m / \left(\frac{g_m}{I_D}\right)^*$

The reference ratio (gm/ID)* is obtained from a similar device whose W* and L* are known.

•Determine the device size (W) by the proportionality btw ID and W:

$$W = \left(W\right)^* \frac{I_D}{\left(I_D\right)^*}$$

Lecture 8 gm/ID

2015-12

slide 31

The reference (gm/ID)* is defined by:

$$\left(\frac{g_m}{I_D}\right)^* = \frac{1}{{I_D}^*} \frac{d{I_D}^*}{dV_G} = \frac{d}{dV_G} \log({I_D}^*)$$

Two typical methods:

- 1. <u>Semi-empirical gm/ID sizing method</u>: Deriving the reference $(gm/ID)^*$ from experimental $I_D(V_{GS})$ characteristics (typically from advanced models such as BSIM or PSP).
- 2. <u>Model-based method</u>: Deriving (gm/ID)* from analytical large signal model adequately accurate by parameter fitting (e.g., EKV model).

Application to OTA Synthesis

Cascode OTA, CMOS-SOI technology

Application

Synthesize a cascode OTA by the gm/ID method:

OTA Synthesis

- Assume total supply current is $I_{tot} = 2 \mu A$, load capacitor is $C_L = 10 pF$, and supply voltage $V_{DD} = 3 V$.
- Design to achieve the best performance of:
 - Open loop dc gain (A_{DC}),
 - Transition frequency (f_T),
 - Phase margin (PM), and
 - Slew rate (SR)
- It is straightforward to take into account of other performance aspects (like <u>noise</u> or <u>common mode rejection</u>) as long as they are directly related to the <u>current</u> and <u>small-signal</u> parameters.
- For large-signal performance such as signal swing, an "I_D vs V_G" or "gm/I_D vs V_G" relationship is required.

gm/ID Design Flow

The DC gain can be derived as:

$$A_{DC} = \left(\frac{g_m}{I_D}\right)_1 \left(\frac{g_m}{I_D}\right)_2 \frac{1}{\frac{1}{V_{A6} \cdot V_{A7}} + \frac{1}{V_{A9} \cdot V_{A10}}}$$

(to be derived next)

where $(gm/ID)_1$ is the ratio of the input transistors and $(gm/ID)_2$ is the ratio of the *cascode* transistors. $V_{A6,7,9,10}$ are Early voltages.

The Early voltages are considered proportional to the transistor length with a typical constant proportionality of 7V/um. (In the paper L is in the rage of 3 to 12 um.)

Derivation of DC Gain

Derivation (cont'd)

$$R_{out,p} \approx g_{m10}r_{d9}r_{d10} = g_{m10}\frac{V_{A9}V_{A10}}{I_{D2}I_{D2}}; \qquad R_{out,n} \approx g_{m7}r_{d6}r_{d7} = g_{m7}\frac{V_{A6}V_{A7}}{I_{D2}I_{D2}}$$

$$R_{out,p} \parallel R_{out,n} \approx g_{m10}\frac{V_{A9}V_{A10}}{I_{D2}I_{D2}} \parallel g_{m7}\frac{V_{A6}V_{A7}}{I_{D2}I_{D2}}$$

$$= \frac{g_{m7,10}}{I_{D2}I_{D2}}\frac{1}{\frac{1}{V_{A9}V_{A10}} + \frac{1}{V_{A6}V_{A7}}}$$

$$g_{m7,10} = g_{m7} = g_{m10}$$

$$A_{DC} = g_{m1}R_{out} = \frac{g_{m1}g_{m7,10}}{I_{D2}I_{D2}}\frac{1}{\frac{1}{V_{A9}V_{A10}} + \frac{1}{V_{A6}V_{A7}}}$$

$$A_{DC} = g_{m1}R_{out} = \frac{g_{m1}g_{m7,10}}{I_{D2}I_{D2}}\frac{1}{\frac{1}{V_{A9}V_{A10}} + \frac{1}{V_{A6}V_{A7}}}$$

$$A_{DC} = g_{m1}R_{out} = \frac{g_{m1}g_{m7,10}}{I_{D2}I_{D2}}\frac{1}{\frac{1}{\frac{1}{V_{A9}V_{A10}} + \frac{1}{V_{A6}V_{A7}}}}$$

$$A_{DC} = g_{m1}R_{out} = \frac{g_{m1}g_{m7,10}}{I_{D2}I_{D2}}\frac{1}{\frac{1}{V_{A9}V_{A10}} + \frac{1}{V_{A6}V_{A7}}}$$

$$A_{DC} = g_{m1}R_{out} = \frac{g_{m1}g_{m7,10}}{I_{D2}I_{D2}}\frac{1}{\frac{1}{V_{A9}V_{A10}} + \frac{1}{V_{A6}V_{A7}}}$$

(cont'd)

$$SR = \frac{B \cdot I_{D1}}{C_L} \qquad f_T = \frac{B \cdot g_{m1}}{2\pi \cdot C_L} \qquad \begin{array}{c} \mathbf{1}^{\text{st}} \text{ order} \\ \text{approximation of } \mathbf{f}_{\mathsf{T}} \end{array}$$

where B is the current mirror ratio, I_{D1} is the current of the first stage, and g_{m1} is the transconductance of the input transistor.

Set B = 2 in the paper.

The max B value is limited by its influence on the OTA stability.

 f_T is also proportional to gm/ID, given fixed ID.

Sizing Procedure for the OTA

- Determine the <u>drain current</u> of each transistor according to the total supply current and the current mirror ratio B (= 2).
- 2. Choose gm/ID accordingly to their effect on the OTA performance,
- 3. Determine the normalized current according to the experimental curve of (gm/ID) vs I₋.
- 4. Calculate W/L for each transistor.

Sizing the OTA

The total current is divided into four branch currents (one branch doubled):

The gm/ID values are determined after design space exploration (optimizing tradeoff btw dc gain and f_{T} for a given PM).

$$\frac{g_m}{I_D}\right)_{1,2} = 28; \qquad \left(\frac{g_m}{I_D}\right)_{7,10} = 30;$$

(correspond to operation in the moderate inversion region close to W.I.)

The current mirror transistors (M3,4,5) are sized in S.I. to guarantee good matching and noise properties.

Lecture 8 gm/ID

slide 42

Choice of gm/ID

- The dc gain is proportional to gm/ID → gm/ID higher better.
- f_T is proportional to gm, hence gm/ID (if ID is fixed).
 → also gm/ID higher better.
- However,
- The max gm/ID is limited by the weak inversion value
 - about 35 V⁻¹ for thin-film fully-depleted SOI MOS (higher);
 - about 25 V⁻¹ for bulk CMOS
- Also limited by the stability requirement
 - because increasing gm increases the transistor sizes (W), (hence, the parasitic caps), reducing the phase margin.

Looking up I_{\Box} from Curve

Sizing Details - 1

1) Sizing the mirror transistors ...

Sizing Details - 2

2) Sizing the cascode transistors (M7, M10) ...

 $I_1 = I_2 = I_3 = 0.4 \,\mu A;$ $I_4 = 2 \cdot I_3 = 0.8 \,\mu A$

Sizing Details - 3

3) Sizing the input transistors (M1,2) and M11 ...

 $I_1 = I_2 = I_3 = 0.4 \,\mu A;$ $I_4 = 2 \cdot I_3 = 0.8 \mu A$ M1,2 sized to I_0 156/3 M_9 M_8 156 M111 sized $\frac{W}{L} = \frac{I_D}{I_{\Box}} = \frac{4 \times 10^{-7}}{8 \times 10^{-9}} = 50$ $M_1^{\leftarrow 1}$ to 94/3 M_2 V_{IN+} V_{IN-} I_4 I_3 , I_2 \overline{M}_{11} M_7 $I_{\Box} \approx 8 \times 10^{-9} A$ $\overline{M}_{3}M_{4}$ M_5 M_{6} 1:1 1:**B** $\frac{g_m}{2} = 28$ I_D

slide 47

(looked up

from curve)

2015-12

Lecture 8 gm/ID

Summary of Transistor Sizes

The transistor lengths are determined by a trade-off btw area and stability, and dc gain (dependence of Early voltage on L). $V_A \sim 7$ (V/um) L empirically for L 3~12um.

TABLE [OTA Transistor Dimensions								
	W	L	Effective W/L					
M1	156	3	57.6					
M2	156	3	57.6					
M3	3.5	12	0.26					
M4	3.5	12	0.26					
M5	3.5	12	0.26					
M6	7	12	0.52					
M7	187.5	3	69.3					
M8	5	6	0.79					
M9	9.5	6	1.58					
M10	657.5	3	243.3					
M11	94	3	34.6					

• The sized OTA was realized in the 3-um CMOS-SOI process.

TABLE II. Calculated, simulated and measured results of OTA									
	Synthesis Prog.	HSPICE	Measurements	Notes					
(gm/ID) ₁ (1/V)	28	29.4	28.3						
(gm/ID) ₂ (1/V)	30	31.6	30.5						
A0 (dB)	103.9	105.5	103						
f _T (kHz)	324	336		@CL=10pF					
PM (deg.)	72.5	72		@CL=10pF					
f _T (kHz)	261*	270*	271*	@CL=12.3pF					
PM (deg.)	63.8*	63*	60*	@CL=12.3pF					
SR (V/us)	0.11	0.09	0.1	@CL=12.3pF					
Output swing (Vpp)	2.02	2.2	1.93	@Vdd=3V					

HSPICE uses level 34 model with a set of parameters optimized to fit the SOI MOSFET characteristics.

Г

DC Gain Estimation

The open-loop dc gain can be estimated as follows:

$$A_{DC} = \left(\frac{g_m}{I_D}\right)_1 \left(\frac{g_m}{I_D}\right)_2 \frac{1}{\frac{1}{V_{A6} \cdot V_{A7}} + \frac{1}{V_{A9} \cdot V_{A10}}}$$

$$\left(\frac{g_m}{I_D}\right)_1 = 28V^{-1}; \qquad \left(\frac{g_m}{I_D}\right)_2 = 30V^{-1}; \qquad V_A \approx (7V/\mu m) \cdot L$$

L6 = 12; L7 = 3; L9 = 6; L10 = 3 um

$$A_{DC} = 49 \times (28)(30) \frac{1}{\frac{1}{12 \times 3} + \frac{1}{6 \times 3}}$$
$$= 18 \times 49 \times (28)(30) \times \frac{2}{3} = 493,920$$

 $20\log_{10}(A_{DC}) = 113.8 \text{ dB}$

~ HSPICE 105.5 dB

slide 50

2015-12

Lecture 8 gm/ID

Comparison to Other Synthesis Methods

	TABLE []]. Comparison of results of gm/ID based synthesis with conventional strong inversion (SI) and weak inversion (WI) synthesis							
		gm/ID method	SI synthesis.	SI real	WI synthesis.	WI real		
Die area	(gm/ID) ₁ (1/V)	28	28	18.7	35	30		
	(gm/ID) ₂ (1/V)	30	30	19.7	35	30.5		
	$A_0 (dB)$	103.9	103.9	96.7	107.1	104.6		
	f _T (kHz)	324	351	236	395	344		
	PM (deg.)	72	84	86	64	68		
	W/L input pair	57.6	7.7	7.7	120.9	120.9		
	W/L cascode n	69.3	6.47	6.47	93.5	93.5		
	W/L cascode p	243.3	17.3	17.3	241.7	241.7		
	$\simeq \Sigma W \cdot L (um^2)$	4900	1359	1359	6185	6185		

By strong inversion (SI) synthesis, it overestimates fT by about 50% and the gain by about 7dB. By weak inversion (WI) synthesis, it overestimates fT by 15% and the die area by 25%.

2015-12

Comments on the comparison

- The strong inversion (SI) synthesis extends quadratic expression to moderate inversion, this will underestimate transistor size (W/L), hence amplifier area.
- The <u>weak inversion (WI)</u> synthesis considers the <u>exponential</u> approximation for ID versus VG, it predicts the gm/ID equals to 35, independent of the current. The ID/(W/L) cannot be determined, it is chosen to guarantee weak inversion operation.
- Using the transistor sizes provided by the SI and WI synthesis, then referring to the real gm/ID versus ID/(W/L) data, the resulting estimations are listed as "SI real" and "WI real".

- gm/ID creates a connection btw the transconductance gm (a small-signal quantity) to the drain current ID (a large-signal quantity).
- The gm/ID methodology provides a <u>unified sizing procedure</u> for MOS devices from the <u>strong to the weak inversion region</u>.
- The gm/ID sizing methodology applies as long as the widths are large enough so that the <u>lateral effects</u> can be ignored,
 - A condition that holds with most CMOS analog circuits.
- The OTA sized with this methodology results in lower current consumption with increased gain given a bandwidth.

References on gm/ID

- F. Silveira, D. Flandre, P. Jespers, "A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA," IEEE J. Solid-State Circuits, vol. 31, no. 9, Sept 1996, pp. 1314–1319.
- P. G. A. Jespers, The gm/ID Methodology, A Sizing Tool for Low-Voltage Analog CMOS Circuits, The Semi-empirical and Compact Model Approaches, Springer, Heidelberg, 2010.
- D. M. Binkley et al, "A CAD methodology for optimizing transistor current and sizing in analog CMOS design," IEEE Trans. CAD, vol. 22, no. 2, Feb. 2003, pp. 225-237.
- D. M. Binkley, Tradeoffs and Optimization in Analog CMOS Design, Wiley, Chichester, England, 2007.
- A. Girardi, F. P. Cortes, and S. Bampi, "A tool for automatic design of analog circuits based on gm/ID methodology," IEEE ISCAS, 2006.

References on EKV

- E. A. Vittoz and J. Felrath, "CMOS analog integrated circuits based on weak inversion operation," IEEE J. Solid-State Circuits, vol. 12, no. 3, pp. 224-231, June 1977.
- E. A. Vittoz, "Low-power low-voltage limitations and prospects in analog design," in Proc. Workshop Advances in Analog Circuit Design, Eindhoven, Mar. 1994.
- A good webpage on EKV by Enz: http://www.ieee.org/portal/pages/sscs/08Summer/Enz.html

Project Assignment

- Use 0.18 um (bulk or SOI) to design the OTA presented in this lecture.
- Use HSPICE level 34 model to fit the gm/ID vs ${\rm I}_{\Box}$ curve.
- Size the transistors to achieve the maximum possible performance.
- Discuss the performance trade-offs:
 - Gain, transition frequency (f_T), PM, slew rate (SR)
 - Power and area
 - Noise