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Preface 
• This lecture was based on the following paper: 

 
– F. Silveira, D. Flandre, and P. G. A. Jespers, “A gm/ID based 

methodology for the design of CMOS analog circuits and its 
application to the synthesis of a silicon-on-insulator 
micropower OTA,” IEEE J. Solid-State Circuits, vol. 31, pp. 
1314–1319, Sep. 1996. 
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Outline 
• Intrinsic gain stage  
• gm/ID in different regions 
• gm/ID versus normalized current (ID/(W/L)) 
• gm/ID sizing procedure 
• Experimental result 
• SOI technology for low-power circuits 
• Summary 
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Tradeoff btw Power & Speed 
• CMOS analog circuits traditionally work in strong 

inversion (saturation) 
• Weak inversion region   minimum power 

consumption; but slow 
 

• Moderate inversion  good compromise in power 
and speed   (future design interest) 
 

• Design challenges: 
– Requiring both low power and high speed 
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Traditional Design Methodology 
• Traditional optimization approaches   SPICE plus 

numerical optimization software  
– Disadvantage: lack of design insights 

• Main stream methods emphasize “strong inversion”; 
• Micropower design techniques exploit known “weak 

inversion” models. 
• Symbolic or simple hand-calculation methods  

better insights,  
– But lack simple and accurate hand models for moderate 

inversion 
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The gm/ID Methodology 
• One single model that works in all operation regions. 
• Focused on gm/ID ratio versus the normalized current 

ID/(W/L)  
– the normalized current ID/ (W/L) is characterized experimentally  
– or fitted with simple analytical models 

 
• Helps design in moderate inversion for low-power 

circuits 
– Offering good compromise between speed and power.; 
– power lower but speed not bad! 
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Motivation of gm/ID 
• gm/ID is a measure of the efficiency to translate 

current (i.e., power) into gm (i.e., gain). 
– The greater gm/ID, the greater gm is for a fixed ID. 
– gm/ID is interpreted as a measure of the “gm enhancement 

efficiency”. 
• It is strongly related to the performance of analog 

circuits. 
• It also gives an indication of the device operating 

region. 
• It can be used for transistor sizing. 
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Intrinsic Gain Stage (I.G.S.) 

The equivalent small-signal circuit 

outvCdgm ing vinv

The common 
source transistor 
M is in saturation 

inV
DI

outV
M

C
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GBW 

DC gain: 

High freq gain: 

m in d outg v g v= − out m
DC

in d

v gH H
v g

= = = −( )0

m in outg v j Cvω= − ( ) out m

in

v gH j
v j C

ω
ω

= = −

outvCdgm ing vinv

Gain-Bandwidth Product (GBW) 

 At high frequencies, most of the current flows by the capacitor C. 
 
 
       

( ) ( ) ( )out inV s H s V s=
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Channel Length Modulation 

out m

in d

v g
v g

= −

out m m
DC A

in d D

v g gA H V
v g I

= = = − = −( )0

AV

Early voltage 

DSV

DI
dg

D
d

A

Ig
V

=

The Early voltage VA controls the  
transistor small-signal output 
conductance,  gd = ID/VA.  
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GBW (cont’d) 

( ) ( )
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ωT : transition freq 
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Calculation of gm/ID 
The expression for gm/ID is derived as follows: 



( )
ln

ln1m D D

D D G G

D
W

G

Lg I I
I I V

I

V V

  ∂  
∂ ∂   = = =
∂ ∂ ∂

The derivative is maximum in the weak inversion (WI) region 
where the dependence of ID versus VG is exponential. 

0 exp G
D

T

VI I
nU

 
=  

 

Called normalized drain 
current 

( )
D

W
L

II ≡


ID normalized by the 
transistor size. 

0

ln GD

T

VI
I nU

 
= 
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Quadratic MOS Models 

The classical MOS model is defined for the three regions: 
 
1) Strong inversion region (Quadratic Model):  

• When Vov = (VG-Vth)  > 0.2V.  
 
2) Moderate inversion region; 
       
3) Weak inversion region: Once the current approaches ID,min (see the  
lecture on EKV), W/L must be increased fastly to further increase the 
DC gain. 
 
       

The connections between ID, the W/L ratio, and gm can be derived 
from the transistor large-signal model. 
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Quadratic model in Strong Inversion 

2G thD D
m

G

V VI Ig
V n n

ββ −∂
= = =
∂

2 1.
2

m

ox D

ngW
L C Iµ
=

2( )
2

G th
D

V VI
n

β
−

=

The quadratic expression of ID for a MOS transistor in saturation: 

ox
WC
L

β µ=

We also have 

2 ( )D
m G th

Ig V V
n n
β β

= = −
2

( )
m

D G th

g
I V V

=
−

Indep. of (W/L) 

ID is proportional to b (hence W), so is gm. 

n is the slope 
factor ≈ 1 
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(cont’d) 
2 1.

2
m

ox D

ngW
L C Iµ
=

22

2. .
2 2

W
m mL

D ox D ox D

g gn n
I C I C Iµ µ

 
= =  

 

2 1m ox
W

D D L

g C
I n I

µ
=

gm/ID is inversely proportional to the sqrt of the normalized ID. 
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2 1.
2

m

ox D

ngW
L C Iµ
=

Relation in strong inversion 

2

loglog log
2

m

o
D

x

ng
C

W I
L µ

 
= − 
 

Approx const in 
strong inversion 

Strong inversion 
asymptote 

Weak inversion 
asymptote 

log(W/L) 

log(ID) 
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ID   small  

• It seems that the DC gain would increase to infinite as the drain 
current goes to 0.  
 

• However, as the current diminishes, the transistor enters 
moderate and weak inversion, where the quadratic model for the 
drain current fails. 

m A
DC

D

g VA
I

= (derived for the 
Intrinsic Gain Stage) 
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Weak Inversion 

0 exp G
D

T

VI I
nU

 
=  

 

D D
m

G T

I Ig
V nU
∂

= =
∂

2 m
T

gGBW f
C

π= =

The drain current in weak inversion is given by the exponential I-V 
relation: 

,minD T mI nU g=

In weak inversion, the drain current ID alone determines gm, 
which in turn determines the GBW. 

i.e., gm/ID is 
approx. 
const in 
weak 
inversion. 

where n is the subthreshold slope factor and UT the thermal voltage. 

(for I.G.S.) 
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Moderate Inversion Region 

Exercise:  Design an I.G.S. with 
• load C = 1 pF; 
• transition frequency fT = 100 MHz; 
• µCox   = 4x10-4 AV2 ;  
• slope factor n = 1.2; 
• Early voltage VA = 10V . 

2

,min

1
2 ( )

m

ox D D

ngW
L C I Iµ −
=

 The candidate model for moderate inversion is (see Jespers 2010, 
Chapter 4): 

The expression is valid in all regions, from strong to weak inversion. 
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Figure 
Plot of aspect ratio W/L vs ID of an (ideal) Intrinsic Gain Stage.  
The numbers besides the RED circles show the Overdrive Gate Voltage   
Vov = (VG – Vth). 

This figure displays 
(W/L) vs ID 
achieving the 
desired GBW (i.e., 
const fT or gm).  

m
DC A

D

gA V
I

= −

DC m A DA g V I= − −log log( ) log

(gm ~ const) 

for ID large 

EKV model 

IDmin 
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W/L versus ID 

Strong inversion 
approx. 

Weak inversion approx. 

EKV model 

VOV 

DC gain 
gm

 c
on

st
 

VOV > 0.2 V 

(See comments next page) 
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Comment on the Figure 
We see that the DC gain varies like the reciprocal of ID; 
   Smaller drain current, larger DC gain.  
 
The largest DC gain is arrived at when ID reaches the minimum 
ID,min. 

,max
A

DC
T

VA
nU

= −

,minD D m TI I g nU= =

m
DC A

D

gA V
I

= −

   the max DC gain: 

The DC gain is approximated by the equation considering Early 
voltage: 

When 
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Calculated and measured gm/ID vs ID/(W/L) for bulk transistors and thin-film 
fully-depleted SOI transistors.  

The thin-film SOI transistors (n=1.1) has increased subthreshold slope (due to 
smaller n), giving a maximum value of gm/ID of about 35 while only 25 for bulk 
transistors (n=1.5). 

Calculated 

Measured 

higher 
gm/ID 
for SOI 

gm/ID is approx. const in 
weak inversion. 

gm/ID becomes quadratic 
in strong inversion, then 
becoming almost linear in 
deep strong inversion (due 
to velocity saturation). 
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Observations 
• gm/ID decreases when the normalized ID moves toward the 

strong inversion region. 
• For the same gm/ID, I,p is lower than I,n due to the mobility 

difference. 
• Hence, requiring larger W/L for pMOS to achieve an equal ID. 

 
• Hence, gm/ID is also an indicator of the transistor operation 

region. 
 

• Both gm and ID are proportional to size; 
• but gm/ID is size independent. 
• Once any two values among gm/ID, gm, and ID are given, we 

can determine the aspect ratio W/L. 
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gm/ID vs normalized current 
• The normalized current (I = ID/(W/L)) is independent 

of the transistor size. 
• The relationship between gm/ID and I is a unique 

characteristic for one type of transistors. 
• However, this statement has to be revised when dealing with short 

channel transistors. 
 

 

• The characteristic of (gm/ID) vs I can be explored 
extensively during the design phase 

• The actual gm/ID vs I can be obtained by either 
analytical method (fitting) or measurement. 
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gm/ID Characterization 
• Two characterization methods: semi-empirical or 

model-driven. 
• 1) Semi-empirical: it makes use of real 

measurements or data derived from advanced MOS 
models. 

• 2) Model-based: it applies simple models with 
reliable analytical expression. 
– The basic EKV model is a candidate but not perfect; 
– The EKV parameters are allowed to vary with bias 

conditions and gate lengths. 
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gm/ID Characterization 
• In order to take into account of process variations, 
• it is more appropriate to consider averaged curves 

which are representative of a large number of 
transistors 
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Accurate Reference Models 
• BSIM is a widely used state-of-the-art model 

available in the public domain. 
– It is based on threshold voltage formulations; 
– But has weaknesses (model inaccuracy) in moderate 

inversion. 
 

• PSP model from Penn State University and Philips 
(now NXP) is considered the more accurate 
industrial standard. 
– Based on the surface potential model (like the Charge Sheet 

Model of EKV). 
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gm/ID Sizing Procedure 
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gm/ID  Sizing Procedure 

2m

D GS th

g
I V V

=
−

*gm
D m ID

I g  
 
 
 

=

( )
*

*( ) D

D

IW W
I

=

 We derived from the quadratic model:  

 (gm/ID) is independent of the gate width (W) 

•Determine gm according to (GBW = fT): 

•Determine the device size (W) by the proportionality btw ID and W: 

The reference ratio (gm/ID)* is obtained from a similar device 
whose W* and L* are known. 

2m Tg f Cπ=

•Determine ID by the const gm/ID equation: 

gm ~ ID ~ W 
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The reference (gm/ID)* 

Two typical methods: 
1. Semi-empirical gm/ID sizing method: Deriving the reference 

(gm/ID)* from experimental ID(VGS) characteristics (typically from 
advanced models such as BSIM or PSP). 
 

2. Model-based method: Deriving (gm/ID)*  from analytical large 
signal model adequately accurate by parameter fitting (e.g., EKV 
model). 

*
*

*

*
1 log( )m D

D
D D G G

g dI d I
I I dV dV

 
= = 

 

The reference (gm/ID)* is defined by: 
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Application to OTA Synthesis 

Cascode OTA, CMOS-SOI technology 
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Application 
Synthesize a cascode OTA by the gm/ID method: 

OTA schematic (to be 
implemented CMOS-SOI) 

B is the current 
mirror gain 

DDV

0I

8M

2nVB

SSV

11M

2M1M

9M

10M

7M

6M4M5M 3M
nVB

1:1 1: B

pVB
INV − INV +

ID2 

ID1 

LC
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OTA Synthesis 
• Assume total supply current is Itot = 2 mA, load 

capacitor is CL = 10pF, and supply voltage VDD = 3 V. 
• Design to achieve the best performance of:  

– Open loop dc gain (ADC),  
– Transition frequency (fT),  
– Phase margin (PM), and  
– Slew rate (SR) 

 
• It is straightforward to take into account of other performance 

aspects (like noise or common mode rejection) as long as they 
are directly related to the current and small-signal parameters. 

• For large-signal performance such as signal swing, an “ID vs 
VG” or “gm/ID vs VG” relationship is required. 
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gm/ID Design Flow 

Highlighted are the data to be 
provided by the designer. 

< PM_min? 
Change B, 
gm/ID or L 
values 

Phase Margin 

SPICE or 
Symbolic  
Simulation 

Perform
ance 

Evaluation 

Technology 
data 

gm/ID vs  
ID/(W/L) 

( 2 )totI Aµ= ( 2)B =

1( / ) ( 28)m Dg I =

2( / ) ( 30)m Dg I =

3( / ) ( 8)m Dg I =

Tf

0A

SR

( / )W L
Transistor 
Lengths 

,W L
( , , )ox jC C 

Accurate fT 

Early 
voltage 

( 10 )LC pF=
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OTA Synthesis 

1 2

6 7 9 10

1
1 1

m m
DC

D D

A A A A

g gA
I I

V V V V

   
=    
    +

⋅ ⋅

The DC gain can be derived as: 

where (gm/ID)1 is the ratio of the input transistors and 
(gm/ID)2 is the ratio of the cascode transistors.  
VA6,7,9,10 are Early voltages. 

The Early voltages are considered proportional to the transistor 
length with a typical constant proportionality of 7V/um. (In the paper 
L is in the rage of 3 to 12 um.) 

(to be derived next) 
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Derivation of DC Gain 

1 2

6 7 9 10

1
1 1

m m
DC

D D

A A A A

g gA
I I

V V V V

   
=    
    +

⋅ ⋅

nMOS cascode 
stage 

6 7
, 7 6 7 7

2 2

A A
out n m d d m

D D

V VR g r r g
I I

≈ =

9 10
, 10 9 10 10

2 2

A A
out p m d d m

D D

V VR g r r g
I I

≈ =

pMOS cascode 
stage 

LC

DDV

0I

8M

2nVB

SSV

11M

2M1M

9M

10M

7M

6M4M5M 3M
nVB

1:1 1: B

pVB
INV − INV +

ID2 

ID1 

(see appendix) 
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Derivation (cont’d) 
6 7

, 7 6 7 7
2 2

A A
out n m d d m

D D

V VR g r r g
I I

≈ =9 10
, 10 9 10 10

2 2

;A A
out p m d d m

D D

V VR g r r g
I I

≈ =

9 10 6 7

2 2 2 2
, , 10 7

A A A A

D D D D
out out p out n m m

V V V V
I I I I

R R R g g= ≈ 

7,10 7 10m m mg g g= =
9 10 6 7

7.10
1 1

2 2

1

A A A A

m

D D V V V V

g
I I

=
+

9 10 6 7

1 7,10
1 1

2 2
1

1

A A A A

m
DC out

D

m

V V
m

D V V

g g
A R

I
g

I
= =

+

9 10 6 7

1 1
1 2

1

A A A A

m

D D V V V

m

V

g
I I
g   

=     +   

gain of 1st stage 

Assuming current 
mirror ratio from the 
input stage to the 
cascode stage is 1:1. 
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(cont’d) 

1D

L

B ISR
C

=


where B is the current mirror ratio, ID1 is the current of 
the first stage, and gm1 is the transconductance of the 
input transistor. 

1

2
m

T
L

B gf
Cπ

⋅
=

⋅

Set B = 2 in the paper. 
 
The max B value is limited by its influence on the OTA 
stability. 

1st order 
approximation of fT 

fT is also proportional to gm/ID, given fixed ID. 
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Sizing Procedure for the OTA 
1. Determine the drain current of each transistor 

according to the total supply current and the current 
mirror ratio B (= 2). 

2. Choose gm/ID accordingly to their effect on the OTA 
performance,  

3. Determine the normalized current according to the 
experimental curve of (gm/ID) vs I. 

4. Calculate W/L for each transistor. 
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2totI Aµ= 2
1 2 3 5 0.4 ;AI I I Aµ µ= = = = 4

4 3 5 0.8AI B I Aµ µ= ⋅ = =

1,2

28;m

D

g
I

 
= 

  7,10

30;m

D

g
I

 
= 

 

3

8;m

D

g
I

 
= 

 

Sizing the OTA 
The total current is divided into four 
branch currents (one branch doubled): 

The gm/ID values are determined 
after design space exploration 
(optimizing tradeoff btw dc gain and 
fT for a given PM). 

(correspond to operation in 
the moderate inversion region 
close to W.I.) 

The current mirror 
transistors (M3,4,5) are 
sized in S.I. to guarantee 
good matching and noise 
properties. 

LC

DDV

0I

8M

2nVB

SSV

11M

2M1M

9M

10M

7M

6M4M5M 3M

nVB

1:1 1: B

pVB
INV − INV +

5
6

9.5
6

94
3

3.5
12

3.5
12

3.5
12

2B =

7
12

187.5
3

657.5
3

156
3

156
3

I4 I3 I2 

I1 
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Choice of gm/ID 
• The dc gain is proportional to gm/ID  gm/ID higher 

better. 
• fT is proportional to gm, hence gm/ID (if ID is fixed). 
 also gm/ID higher better. 
 

• However,  
• The max gm/ID is limited by the weak inversion value  

– about 35 V-1 for thin-film fully-depleted SOI MOS (higher); 
– about 25 V-1 for bulk CMOS 

• Also limited by the stability requirement  
– because increasing gm increases the transistor sizes (W), 

(hence, the parasitic caps), reducing the phase margin. 
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Looking up I from Curve 

m

D

g
I

about 100x 

For nMOS, I » 10-6 
for gm/ID = 8. 
For pMOS, I is 
smaller. 

For nMOS, I » 10-8 
for gm/ID = 30. 
For pMOS, I is 
smaller. 

30 
28 

8 
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Sizing Details - 1 

1 2 3 0.4 ;I I I Aµ= = =

0I

8M

11M

2M1M

9M

10M

7M

6M4M5M 3M
1:1 1: B

INV − INV +

1I
2I 3I 4I

4 32 0.8I I Aµ= ⋅ =

8m

D

g
I

= 610I A−=


7

6

4 10 0.4
10

DW I
L I

−

−

×
= = =



M3,4,5 sized to 
3.5/12 

M8 (pMOS) sized 
to 10/12 = 5/6 

M9 (pMOS) sized to 
2xW8 = 10/6 (9.5/6 

in the paper) 

M6 (nMOS) sized to 
2xW4 = 7/12 

1) Sizing the mirror transistors ... 

5
6

9.5
6

3.5
12

7
12
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Sizing Details - 2 

1 2 3 0.4 ;I I I Aµ= = = 4 32 0.8I I Aµ= ⋅ =

30m

D

g
I

=

810I A−=


7

8

8 10 80
10

DW I
L I

−

−

×
= = =



M7 sized to 
187.5/3 = 62.5 

2) Sizing the cascode transistors (M7, M10) ... 

0I

8M

11M

2M1M

9M

10M

7M

6M4M5M 3M
1:1 1: B

INV − INV +

1I
2I 3I 4I

187.5
3

657.5
3

M10 (pMOS) 
sized larger to 
657.5/3 = 219 
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Sizing Details - 3 

1 2 3 0.4 ;I I I Aµ= = =

4 32 0.8I I Aµ= ⋅ =

28m

D

g
I

=

98 10I A−≈ ×


7

9

4 10 50
8 10

DW I
L I

−

−

×
= = =

×


M1,2 sized to 
156/3 

3) Sizing the input transistors (M1,2) and M11 ... 

0I

8M

11M

2M1M

9M

10M

7M

6M4M5M 3M
1:1 1: B

INV − INV +

1I
2I 3I 4I94

3

156
3

(looked up 
from curve) 

M111 sized 
to 94/3 
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Summary of Transistor Sizes 

TABLE Ⅰ  
OTA Transistor Dimensions 

  W L Effective W/L 

M1 156 3 57.6 

M2 156 3 57.6 

M3 3.5 12 0.26 

M4 3.5 12 0.26 

M5 3.5 12 0.26 

M6 7 12 0.52 

M7 187.5 3 69.3 

M8 5 6 0.79 

M9 9.5 6 1.58 

M10 657.5 3 243.3 

M11 94 3 34.6 

The transistor lengths are 
determined by a trade-off btw area 
and stability, and dc gain 
(dependence of Early voltage on L). 
VA ~ 7 (V/um) L empirically for L 
3~12um. 
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Experimental Result 
• The sized OTA was realized in the 3-um CMOS-SOI process.  

TABLE Ⅱ. Calculated, simulated and measured results of OTA 

  Synthesis Prog. HSPICE Measurements Notes 

(gm/ID)1 (1/V) 28 29.4 28.3   

(gm/ID)2 (1/V) 30 31.6 30.5   

A0 (dB) 103.9 105.5 103   

fT (kHz) 324 336   @CL=10pF 

PM (deg.) 72.5 72   @CL=10pF 

fT (kHz) 261* 270* 271* @CL=12.3pF 

PM (deg.) 63.8* 63* 60* @CL=12.3pF 

SR (V/us) 0.11 0.09 0.1 @CL=12.3pF 

Output swing (Vpp) 2.02 2.2 1.93 @Vdd=3V 

HSPICE uses level 34 model with a set of parameters optimized to fit the 
SOI MOSFET characteristics. 
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DC Gain Estimation 
The open-loop dc gain can be estimated as follows: 

1 2

6 7 9 10

1
1 1
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(7 )AV V m Lµ≈ ⋅

L6 = 12; L7 = 3; L9 = 6; 
L10 = 3 um 

( )( ) 149 28 30 1 1
12 3 6 3

DCA = ×
+

× ×

( )( ) 218 49 28 30 493,920
3

= × × × = 1020log ( ) 113.8 dBDCA =

~ HSPICE 105.5 dB 
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Comparison to Other Synthesis Methods 
TABLE Ⅲ. Comparison of results of gm/ID based synthesis with conventional 

strong inversion (SI) and weak inversion (WI) synthesis 

  gm/ID 
method 

SI 
synthesis. 

SI 
real 

WI 
synthesis. 

WI 
real 

(gm/ID)1 (1/V) 28 28 18.7 35 30 

(gm/ID)2 (1/V) 30 30 19.7 35 30.5 

A0 (dB) 103.9 103.9 96.7 107.1 104.6 

fT (kHz) 324 351 236 395 344 

PM (deg.) 72 84 86 64 68 

W/L input pair 57.6 7.7 7.7 120.9 120.9 

W/L cascode n 69.3 6.47 6.47 93.5 93.5 

W/L cascode p 243.3 17.3 17.3 241.7 241.7 

ΣW×L (um2) 4900 1359 1359 6185 6185 

By strong inversion (SI) synthesis, it overestimates fT by about 50% and the gain by about 7dB. 
By weak inversion (WI) synthesis, it overestimates fT by 15% and the die area by 25%. 

Die area 
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Comments on the comparison 
• The strong inversion (SI) synthesis extends quadratic 

expression to moderate inversion, this will underestimate 
transistor size (W/L), hence amplifier area. 
 

• The weak inversion (WI) synthesis considers the exponential 
approximation for ID versus VG, it predicts the gm/ID equals to 
35, independent of the current. The ID/(W/L) cannot be 
determined, it is chosen to guarantee weak inversion operation. 
 

• Using the transistor sizes provided by the SI and WI synthesis, 
then referring to the real gm/ID versus ID/(W/L) data, the 
resulting estimations are listed as “SI real” and “WI real”. 
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Summary 
• gm/ID creates a connection btw the transconductance gm (a 

small-signal quantity) to the drain current ID (a large-signal 
quantity).  
 

• The gm/ID methodology provides a unified sizing procedure for 
MOS devices from the strong to the weak inversion region. 
 

• The gm/ID sizing methodology applies as long as the widths are 
large enough so that the lateral effects can be ignored,  
– A condition that holds with most CMOS analog circuits. 

 
• The OTA sized with this methodology results in lower current 

consumption with increased gain given a bandwidth. 
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Project Assignment 
• Use 0.18 um (bulk or SOI) to design the OTA 

presented in this lecture. 
• Use HSPICE level 34 model to fit the gm/ID vs I 

curve. 
• Size the transistors to achieve the maximum 

possible performance. 
• Discuss the performance trade-offs: 

– Gain, transition frequency (fT), PM, slew rate (SR) 
– Power and area 
– Noise 
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