
PhD Course: ADVANCED TOPICS in DESIGN AUTOMATION 

(博士课程：集成电路设计自动化专题) 

2015 slide 1 lecture 5 

Lecture 5.   
Software Engineering 

(Part 1) 

Prof. Guoyong Shi 
shiguoyong@sjtu.edu.cn 

Dept of Micro/Nanoelectronics 
Shanghai Jiao Tong University 

Fall 2015 



2015 slide 2 lecture 5 

Acknowledgement 

• Most part of this lecture was borrowed from a series 
of lectures offered by Prof. Gary Kimura, CS of 
University of Washington, 2001. 

• His background 
 4 years at DEC 
 11 years at Microsoft 
 At DEC he prototyped a new PASCAL system compiler 
 At Microsoft he prototyped the Windows NT file system 

 
 



2015 slide 3 lecture 5 

Contents 

• What and why software engineering 
• Looming software crisis 
• Lifecycle model 
• Group organization  
• Responsibilities of team member 
• Software requirements 
• Software prototyping 



2015 slide 4 lecture 5 

Rumors and Myths on SE 

• Rumors: 
• Software Engineering is not rocket science and not 

something to learn from a textbook 
• Software Engineering is the use of common sense 

and discipline 
 

• Learn that building large software systems is not a 
mere matter of programming 
 



2015 slide 5 lecture 5 

Then how to teach Software Engineering? 

• There is not a single right way to teach software 
engineering 
 

• Rule of the thumb: Have to teach SE from experience 
 

• Principle: All engineering, including software 
engineering, is concerned with building useful 
artifacts under constraints 



2015 slide 6 lecture 5 

Class Project 

• Learn SE while you implement small C++ programs 
 

• To have hands-on feeling 
• To build up your coding confidence 
• To learn how to manipulate “complexity” 
• To learn from Internet resources 



2015 slide 7 lecture 5 

Several Definitions of Software Engineering 

• The practical application of scientific knowledge to 
the design and construction of computer programs 
and the associated documentation required to 
develop, operate, and maintain them [Boehm]. 

• The systematic approach to the development, 
operation, maintenance, and retirement of software 
[IEEE]. 

• The establishment and use of sound engineering 
principles (methods) in order to obtain economically 
software that is reliable and works on real machines 
[Bauer]. 

• Multi-person construction of multi-version software 
[Parnas]. 



2015 slide 8 lecture 5 

Why Study Software Engineering? 

• Most complex systems need software 
 

• However, building software without discipline is 
crazy 
 

• Building a large complete software project is hard 
 

• There is a perceived crisis in our ability to build 
large-scale software 
 



2015 slide 9 lecture 5 

Scale of Software 

Code sizes due to Jon Jacky: KLOC = 1000 lines of 
code; MLOC = 1,000,000 lines of code 
 

Bar code scanners 10-50KLOC 

4-speed transmissions 20KLOC 

ATC ground system 130KLOC 

Automatic teller machine 600KLOC 

Call router 2.1MLOC 

B-2 Stealth Bomber 3.5MLOC 

Seawolf submarine combat 3.6MLOC 

NT 4.0 10MLOC 

NT 5.0  
    (NTFS alone) 

60+LMLOC 
    (250K source lines or 100KLOC ) 



2015 slide 10 lecture 5 

Size of Software 

  

Code Size (LOC) Dominant Discipline 

103 Mathematics 

104 Science 

105 Engineering 

106 Social Science 

107 Politics 

108 Legal? 

As the size of the software system grows, the 
dominant discipline changes (due to Stu Feldman) 



2015 slide 11 lecture 5 

Software needs coordination among people 

• Therefore, most complex systems require many 
people to build 

• Hence the critical need for coordination 



2015 slide 12 lecture 5 

The Software Crisis 

• “We are unable to produce or maintain high-quality 
software at reasonable price and on schedule.” 
 

• “Software systems are like cathedrals; first we build 
them and they we pray. [Redwine]" 



2015 slide 13 lecture 5 

To some degree this is accurate 

• Some so-called software “failures” are often 
management errors  

• (the choice not to do something that would have 
helped) 
 

• In some areas, in particular safety-critical real-time 
embedded systems, we may indeed have a looming 
crisis 



2015 slide 14 lecture 5 

Why is it hard? 

• There is no single reason software engineering is 
hard—it’s a “wicked problem” 
 

• Lack of well-understood representations of software 
makes customer and engineer interactions hard 
[Brooks] 
 Norman Augustine [Wulf]: “Software is like entropy.  It is 

difficult to grasp, weighs nothing, and obeys the second law 
of thermodynamics; i.e., it always increases.”  [Law XXIII] 



2015 slide 15 lecture 5 

In Your Programming Class 

• In your programming class you mostly implemented 
carefully defined specifications (by your instructor) 



2015 slide 16 lecture 5 

Example 

 main.cpp - this is the main driver program.  
 From this code we make calls to the 2DPlotter 

classes and functions. 
 2DPlotter.h, 2DPlotter.cpp - these contain a 

skeleton of the specification and implementation 
of the 2D plotter as a C++ class.  

 You will complete the implementation by adding 
more functions and variable definitions. 

 Remember to document your implementation and 
present to the class! 



2015 slide 17 lecture 5 

(continued) 

• Write a Makefile to automatically build your program 
whenever you make some changes. 
 

• You were given... 
(1)   …the specification (in another slide) 
(2)   …the design (discussed in class) 
(3)   …hints about the implementation 
(4)   …some partial code 
(5)   …pointer to some graphics libraries to use 



2015 slide 18 lecture 5 

Software lifecycle 

• A software engineering lifecycle model describes 
how one might put structure on the software 
engineering activities 
 

• The classic lifecycle model is the waterfall model 
(roughly due to Royce in 1956), which is structured 
by a set of activities and is inherently document-
driven 



2015 slide 19 lecture 5 

Waterfall Model describing software lifecycle   

  
Analysis and 

spec 

Program 
design 

Implementation 

Testing 

Maintenance 
and upgrade 



2015 slide 20 lecture 5 

Hints from the Lifecycle Model 

• The cost of fixing errors at later lifecycle phases is 
much higher than at earlier stages 
 

• A software lifecycle account for more than 
programming 

 
• Also pay attention to the feedback between phases 

 



2015 slide 21 lecture 5 

Why need a model 

• Software programs are large complicated beasts 
 Windows NT started out small.   
 Today not one single person can grasp all of NT. 

• Use a model to recognize that Software Engineering 
is more than just programming 

• Recognize product phases in a life cycle 
 Various requirements specification phases 
 Design phases 
 Coding and testing phases 
 Maintenance phase (bug fixes and revisions) 

• Dividing in phases means management 



2015 slide 22 lecture 5 

More reasons to have a model 

• A model helps you to recognize and define the 
division of labor (i.e., management) 
 Individual responsibilities 
 How big should a team be 
 Parallel work efforts 

• Provides a structure for communication between 
different parties 
 

• Documentation is vital 
 Comments in the code is not sufficient 
 Dave Cutler’s NT design workbook is now part of the 

Smithsonian (a history museum in US) 



2015 slide 23 lecture 5 

A good model means good management 

• A paradigm （范例，样式） that adds discipline and 
order to software development 

• Provides a formal mechanism to clarify, track, and 
modify the product requirements throughout the 
product life cycle 
 

• Even you code totally by yourself, it is still good to be 
aware of the lifecycle model 

• Because one day another person might pick up your 
code 



2015 slide 24 lecture 5 

More goals of a good model 

• Compel engineers to want to use it 
 Convinces them that they will build a better product 

 
• Keep everyone organized 

 
 Recognize that Software Engineering is a process of iterative 

refinement 
 Allow for alternate designs and implementations 

 



2015 slide 25 lecture 5 

Lessons from the models 

• Just as Software Engineering is full of compromises, 
so is using a Software Engineering model 
 

• So take these models with a grain of salt and use 
only those parts that most suit your situation 



2015 slide 26 lecture 5 

Product requirements 

• Needs a document listing the product requirement.   
 

• Some necessary items are: 
 Describe its general function and purpose 
 Describe how it will be used by the customer 
 Describe what is required for the customer 
 Describe various aids to the customer 
 Describe hardware and software requirements 



2015 slide 27 lecture 5 

Group Organization 

• 22 students in one group – for example 
 

• Not everyone will write shipping code 
 Manager, secretary, and group organizer (1 - 2) 
 Program management (4 - 5) 
 Software Developer (5 - 6) 
 Tester (7 - 8) 
 Documentation (3 – 4) 



2015 slide 28 lecture 5 

Manager’s Responsibilities 

• Organizing the whole thing 
• Understanding the whole project 
• Ensuring that everyone knows their part and 

milestones (communication) 
• Catching up the schedule 
• Not doing the work, but knowing how each part fits in 



2015 slide 29 lecture 5 

Program Manager’s (PM) Responsibilities 

• Defining the product 
• Identifying customer needs 
• Questioning the need or appropriateness of the 

design  
• Working through all the usage scenarios 
• Looking outside the “box” 

 
• If you are alone in your team, you take the 

responsibility of everything 
• But imagine you are taking the roles in turn 



2015 slide 30 lecture 5 

Developer’s Responsibilities 

• Designing the architecture and coding the product 
 

• Working with PM to ensure you are building what 
they defined 
 

• Adding APIs as needed by the test group 



2015 slide 31 lecture 5 

Tester’s Responsibilities 

• Unit or component testing 
• Correctness tests 
• End (terminal, extreme condition) cases  
• Error checking 
• Stress tests (how large problem it can solve) 
• Independent code review leading to targeted tests 
• Interaction with other systems 



2015 slide 32 lecture 5 

Documentation Responsibilities 

• Keeping track of all the design documentation 
• Complete end user documentation 
• Quick guides and on-line help. 



2015 slide 33 lecture 5 

Software Requirements 

• Two words: “Risks” and “Constraints” 
• Specifying requirements 
 One person’s requirement is usually someone 

else’s design 
 Expect unintended side affects (i.e., customers will 

use the system in ways you can never imagine) 
 

• How to write a requirement 
 It is an iterative process,  
 a good requirements writer bridges the gap between 

customer and implementer 
 



2015 slide 34 lecture 5 

What should be in a Requirement 

• Remember requirement could be changing. 
 

• Expect the requirements (goals) to change, due to 
customer changes, market place changes, 
technological changes 

• Expect the team to change during the product cycle.   
• One of the hardest tasks is to replace people in the 

middle of a project 



2015 slide 35 lecture 5 

Back to our programming assignment 



2015 slide 36 lecture 5 

More on the Programming Assignment 

• Write a plan with milestones 
 Must have a time schedule (in weeks) 

• Lifecycle model 
 Division of labor is important (if you are alone then division 

of time) 
 Making sure you have a roadmap 

• Requirements 
 Important to write this down 
 Keep this realistic 
 Expect them to change 



2015 slide 37 lecture 5 

More on the Assignment 

• You must learn to design 
 Design your code and components 
 Design possible extensions 

• Be aware of testing  
 Coding and component testing 
 Integration and system testing 

• Deployment and maintenance  
 How do you want the user to use your software ? 



2015 slide 38 lecture 5 

How to build and use software 
prototypes? 



2015 slide 39 lecture 5 

What is prototyping 

• Building models that demonstrate properties of the 
real product 

• Building something faster and cheaper than the real 
product 



2015 slide 40 lecture 5 

Why prototype 

• To understand 
 How people will use and interact with the product 
 How to build the real product 

• To tweak the design before it is too late 
 Change requirements 
 Change interface 
 Change architecture 

• The goal is to convey enough information to judge 
the design and the product development process 



2015 slide 41 lecture 5 

Examples of prototyping 

Sample of prototypes: 
 

• A subset of an API set 
• A non-fully featured app 



2015 slide 42 lecture 5 

What is missing from a software prototype 

• The code is missing 
 Typically most of the error handling is missing 
 May not be extensible, maintainable or just well designed 
 Typically not fully featured 

 
• The documentation, testing, performance, and 

support considerations are missing 



2015 slide 43 lecture 5 

When to do, when to start, and when to stop? 

• Finish the prototype when you’ve learned what you 
wanted to know 
 

• But resist jumping into the coding phase before 
you’re really ready 


	Lecture 5.  �Software Engineering�(Part 1)
	Acknowledgement
	Contents
	Rumors and Myths on SE
	Then how to teach Software Engineering?
	Class Project
	Several Definitions of Software Engineering
	Why Study Software Engineering?
	Scale of Software
	Size of Software
	Software needs coordination among people
	The Software Crisis
	To some degree this is accurate
	Why is it hard?
	In Your Programming Class
	Example
	(continued)
	Software lifecycle
	Waterfall Model describing software lifecycle  
	Hints from the Lifecycle Model
	Why need a model
	More reasons to have a model
	A good model means good management
	More goals of a good model
	Lessons from the models
	Product requirements
	Group Organization
	Manager’s Responsibilities
	Program Manager’s (PM) Responsibilities
	Developer’s Responsibilities
	Tester’s Responsibilities
	Documentation Responsibilities
	Software Requirements
	What should be in a Requirement
	Back to our programming assignment
	More on the Programming Assignment
	More on the Assignment
	How to build and use software prototypes?
	What is prototyping
	Why prototype
	Examples of prototyping
	What is missing from a software prototype
	When to do, when to start, and when to stop?

