Introduction to Design Automation

Lecture 1. Course Overview

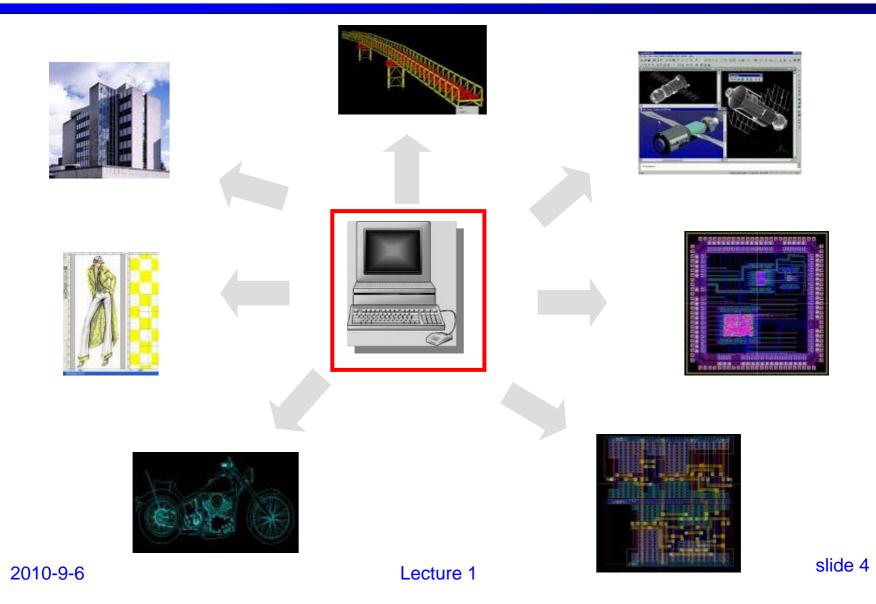
Guoyong Shi, PhD

shiguoyong@ic.sjtu.edu.cn

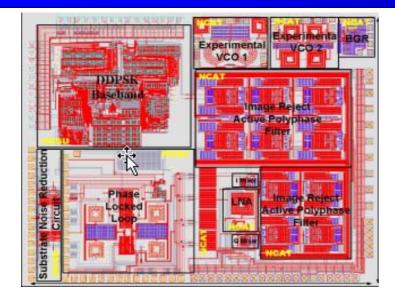
School of Microelectronics

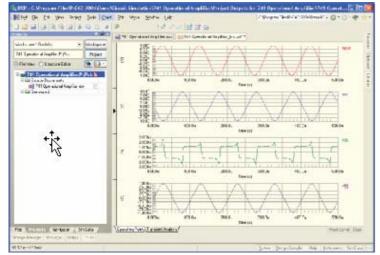
Shanghai Jiao Tong University

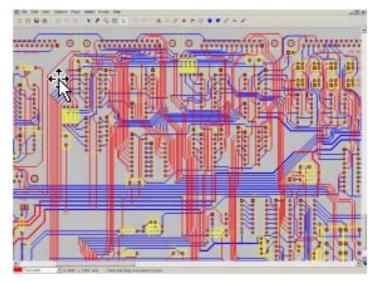
September, 2010

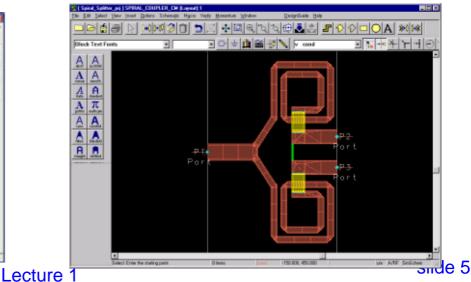


- Course overview
- CAD basics
- Project-based learning and teamwork
- What is EDA?
- Top 10 algorithms in 20th century

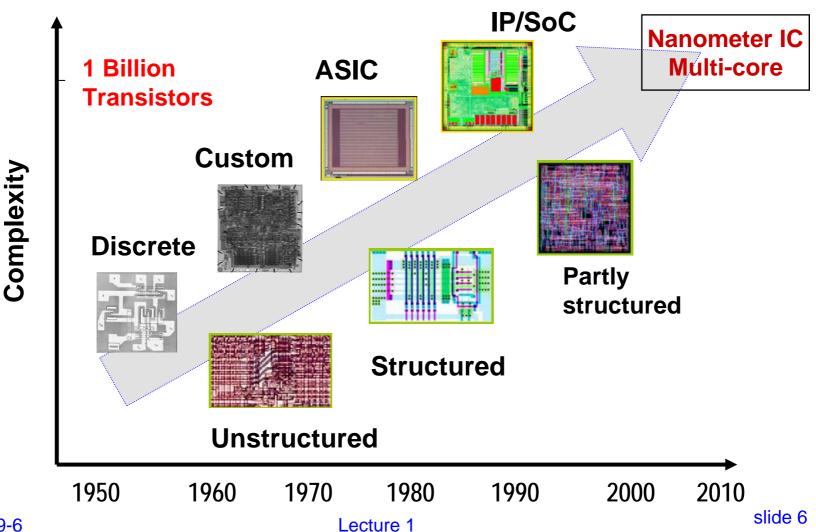

What to learn in this course?


- Learn software skills for Design Automation
- Get familiar with Linus OS or CYGWIN
- Learn GUI programming toolkits
 GTK, Qt, or others
- Learn compiler tools
 - Yacc and Bison
 - PCCTS
- Learn principles of circuit simulation
 - to construction methods and sovling algorithms


Computer-Aided Design (CAD)



CAD for Integrated Circuits (IC)



2010-9-6

The VLSI Roadmap

2010-9-6

- EDA = Electronic Design Automation
- EDA is another name for Computer-Aided Integrated Circuit Design
- EDA as an area born with the IC industry.
- EDA is application science and technology.
- EDA is part of the software industry

What this course is and is not

- This course does <u>not</u> teach how to use EDA tools
 - you learn them in IC design courses
- This course teaches the basic principles on how to develop EDA software.
 - You mainly learn how a SPICE simulator is developed.

Who should learn this course

Those who are interested in

- challenging software programming.
- circuit simulation.
- analog/RF circuit design.
- a career in EDA industry

Textbook & Webpage

- Textbook
 - No official textbook is used
 - You must come to attend all lectures!
- Course webpage
 - http://edalab.sjtu.edu.cn/moodle/
 - 集成电路设计/EDA引论
 - password: ugradeda
 - For downloading course materials
 - For uploading finished homework, etc.

Good Reference Books

- T.L. Pillage, R.A. Rohrer, C. Visweswariah, *Electronic Circuit and System Simulation Methods*, McGraw-Hill, Inc., 1995.
- C.K. Cheng, J. Lillis, S. Lin and N. Chang, *Interconnect Analysis and Synthesis*, John Wiley & Sons, Inc., 2000.

... but are not required.

• Instructor

- 施国勇 教授
- shiguoyong@ic.sjtu.edu.cn
- TA: 徐辉 (master student)
 - xuhui@ic.sjtu.edu.cn

Instructor Office Hours

- Tuesday: 1:00-2:00pm
- Thursday: 1:00-2:00pm
- Or appointment by email
- Office: School Building, Room 415
- TA office hours will be posted on the course webpage

Course Structure & Grading

- 3 hours x 17 weeks = 51 hours
- Lectures + Projects + HW + Final Exam
- **<u>Grading policy</u>** (for reference)
 - (30%) Lecture-based assignments (HW);
 - (40%) A Spice simulator (team work)
 - Midterm seminar;
 - Term seminar -- team presentation & simulator demo;
 - Final report (individual)

- (30%) Final Exam (based on lectures)

Course Goals

- Learn to develop "large" C/C++ programs.
 - Upgrade your programming skills
- Learn how to make your programs "visible" (GUI programming).
- Learn to formulate circuit problems for programming.
- Learn to solve circuit problems by efficient algorithms.
- Long-term goal
 - To improve your software skills for a successful career.
 - Software techniques for EDA are equally useful in other technical areas.

Programming Assignments

- You have to finish a series of programming assignments in this course
- Start from GUI programming;
 - Write "visible programs"
- Work out a small SPICE simulator step-bystep
 - Write the building blocks by assignments;
- From individual programming to team-based collaborative programming.

Project-based Learning

- Emphasized in this course!
- The project components:
 - Develop a GUI for your simulator
 - Develop a mini-SPICE simulator capable of simulating
 - R, C, L, Controlled Sources, (Diodes, MOSFETs)
 - DC analysis; AC analysis; Transient analysis; Error control; ...
- Teamwork
 - About 4 students in each team
- Learn to present your work well
 - Every student must present at least once

Student Achievements Last Year

Students of year 2009

- The best simulators could simulate *diodes*, *MOS transistors*;
- could do DC, AC + Noise, Transient analysis, and error control.
 - much better than the students of the year 2008.
- Reason:

- The class-scale was reduced (about 20 students)

Teamwork

- Teamwork is emphasized in this course.
- Teams are set up in the first two weeks.
- Each team elects a team leader.
- The team leaders should
 - Coordinate job assignments inside team
 - Monitor project progress
 - Encourage innovative implementations
 - Regulate team member presentations
 - Every student should present at least once

How to form teams?

- Num of teams depending on registration
 4 members in each team (recommended)
- Rough work-load divisions:
 - One for GUI
 - One for Parser
 - One for Solver
 - One for Analysis Tasks (DC/AC/Tran)
- Teams are not advised to change thru out the course.
- Teams are encouraged to compete by presentations and demos!

Final Term Report

- Every student should submit an individual final project report.
 - Should emphasize your own work in the team
 - Should include:
 - implementation details;
 - explanation of the code design; and
 - experimental results.
 - Attach the source code.
- Learn to write your final report like a technical paper.

Your Individual Grade

- The final grade of each student will be based upon
 - 1. Weekly assignments (have to turn in before due and get graded)
 - 2. The overall team performance
 - 3. Your individual contribution (seen from presentation, demo, and report)
 - 4. The final exam (everyone must take)

Target of the Class Project

- Develop a small circuit simulator
 - with GUI (for netlist input & waveform output)
 - with Netlist parser
 - with linear solver (for solving circuits)
 - capable of simulating basic circuit elements; including transistors
 - capable of DC/AC/Tran analyses and error control, etc.

Assignments Policy

- All assignments are due in one week (exceptions will be noted)
 - Turn in no later than a week after the assignment lecture is finished.
- Submit all finished assignment electronically to MOODLE.
- Without permission, no late turn-in will be graded.
 - So, be aware of the due!

Academic Integrity

- No tolerance to cheating!
- Any cheating in exams will lead to a Fail grade.
- Typical cheating behavior:
 - copy other student's assignments;
 - copy other student's code;
 - use earlier-year student's work;
 - cheating in exams.
- Students are encouraged to exchange ideas.

A Brief Introduction to EDA

- 1960's for layout and routing tools
- 1970's for circuit simulation UC Berkeley SPICE
- 1980's major EDA companies were founded in US
- 1990's Verilog/VHDL languages pushed to market
- 2000's Mainstream EDA companies stablized
- Future: New EDA tools for emerging design needs; ...

Leading EDA Companies

- Synopsys, Inc. (co-founded by Aart J. de Geus in 1986)
 - <u>www.synopsys.com</u>
 - Mountain View, California
 - Now has operation in Shanghai (over 400 employees)
- Cadence Design Systems, Inc. (founded 1987)
 - <u>www.cadence.com</u>
 - San Jose, California
 - Now has office in Shanghai (over 200 employees)
- Mentor Graphics Corp. (founded in 1981)
 - <u>www.mentor.com</u>
 - Wilsonville, Oregon
 - Mainly digital design and verification tools
- Magma Design Automation, Inc. (founded in 1997)
 - <u>www.magma-da.com</u>
 - Santa Clara, CA

Leading EDA Companies (cont'd)

- Ansoft Corporation
 - founded by Dr. Zoltan Cendes in 1984
 - www.ansoft.com
 - Pittsburgh, Pennsylvania (PA)
 - mainly on EM/RF design tools
- Taiwan SpringSoft (growing quickly)
 - www.springsoft.com

EDA Research Publications

World-leading EDA journals

- IEEE TCAD (started 1982)
 - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
- The following journals also publish CAD papers
 - IEEE Transactions on Circuits and Systems
 - IEEE Transactions on VLSI Systems
 - IEEE Transactions on Computers
- ACM TODAES (started 1996)
 - ACM Transactions on Design Automation of Electronic Systems

Leading EDA Conferences

- DAC (1st in 1964; mainly in Silicon Valley, CA)
 - IEEE/ACM Design Automation Conference
 - <u>www.dac.com</u>
- ICCAD (1st in 1983; mainly in Silicon Valley, CA)
 - International Conference on Computer-Aided Design
 - www.iccad.com
- ASPDAC (1st 1995, mainly in Yokohama/Japan)
 - Asia-South Pacific Design Automation Conference
 - Top EDA conference in Asia
- DATE Design, Automation and Test in Europe
 - <u>www.data-conference.com</u>
 - Top EDA conference in Europe (started 1989)

International EDA Organizations

• CEDA – Council on Electronic Design Automation

- An organization of IEEE formed in 2005
- To unify EDA-related IEEE activities among
 - Antennas and Propagation Society
 - Circuits and Systems Society
 - Computer Society
 - Electron Devices Society
 - Solid State Circuits Society
- The EDA Consortium
 - The trade association for electronic design companies
 - <u>www.edac.org</u>
- The European Design and Automation Association

EDA is a comprehensive area

- EDA is "interdisciplinary"
 - Using knowledge from many technical areas
- EDA is important in that the whole IC industry relies on it!
 - From device to manufacturing to circuit design
 - to verification, ...
- EDA is comprehensive in the sense of
 - Knowledge; Research; Industry revenue;
 - Investment and global competition
- US universities and companies lead the whole EDA technology.

EDA covers many subjects

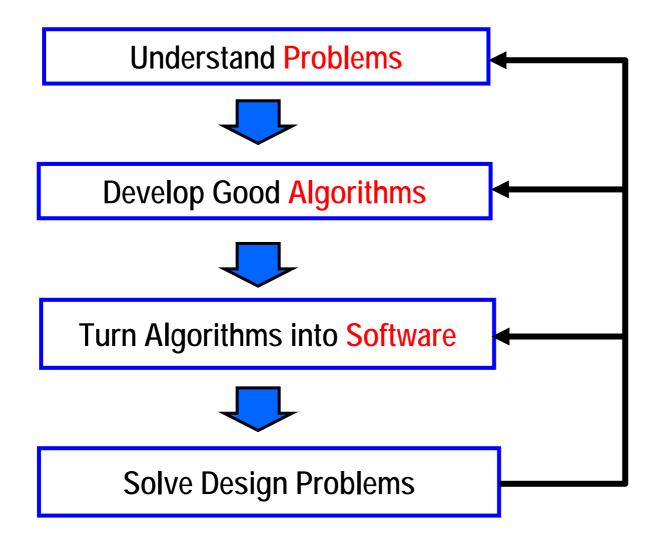
- <u>Simulation</u> (a big part)
 - Circuit simulation (HSpice, Spectre, ADS, ...)
 - Companies are developing faster simulators
 - Mixed-technology simulation (electrical/mechanical/thermal...)
- Device Modeling
 - Modeling new devices for commercial simulators
- <u>Synthesis</u>
 - Logic synthesis
 - From language description to gate-level synthesis to placement and route
 - High-level (system-level) synthesis
 - Use high-level languages (C/C++; MATLAB) for IC design.

EDA sub-areas (cont'd)

- Physical Design Automation
 - Placement and Routing
 - Timing analysis
 - Signal integrity / power analysis
 - Clock tree / mesh synthesis
- Electromagnetic (EM) Simulation
 - HFSS (Ansoft)
 - FEMLAB
 - EEsof (Agilent)

EDA sub-areas (cont'd)

- Verification and Testing Tools
 - Demanding innovations
- <u>Design automation tools for embedded</u> <u>systems</u>
 - FPGA design tools
 - DSP design tools
 - ESL
 - Algorithmic Synthesis


Knowledge Base for EDA

- Microelectronics
 - Device physics; circuit design; tools experience
- Electrical engineering in general
 - Signal theory and transforms; linear system theory; circuit analysis;

Mathematics

- Linear algebra; differential equations; numerical methods; graph theory; optimization theory; ...
- Computer Science
 - C/C++ programming; compiler; parallel computing; software engineering; ...

Typical Practice in EDA

Circuit Simulation

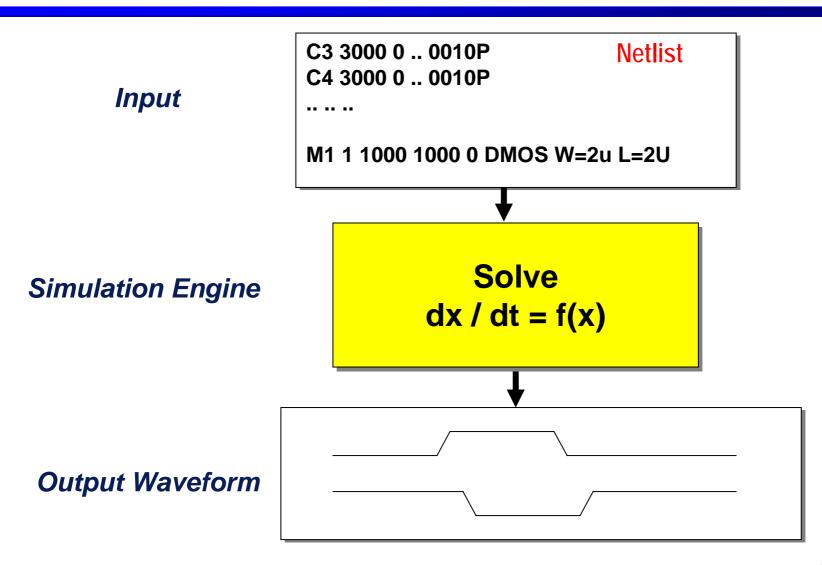
- The focus of this course.
- Necessary Components for Circuit Simulation
 - Description of circuit (Netlist)
 - Internal representation of circuit in simulator
 - Lots of data structures
 - Models for all possible circuit elements
 - R, C, L, Sources (dependent, independent)
 - Diodes; Transistors
 - Transmission Lines
 - Switches Transformer
 - •

Simulation engine for analysis (cont'd next)

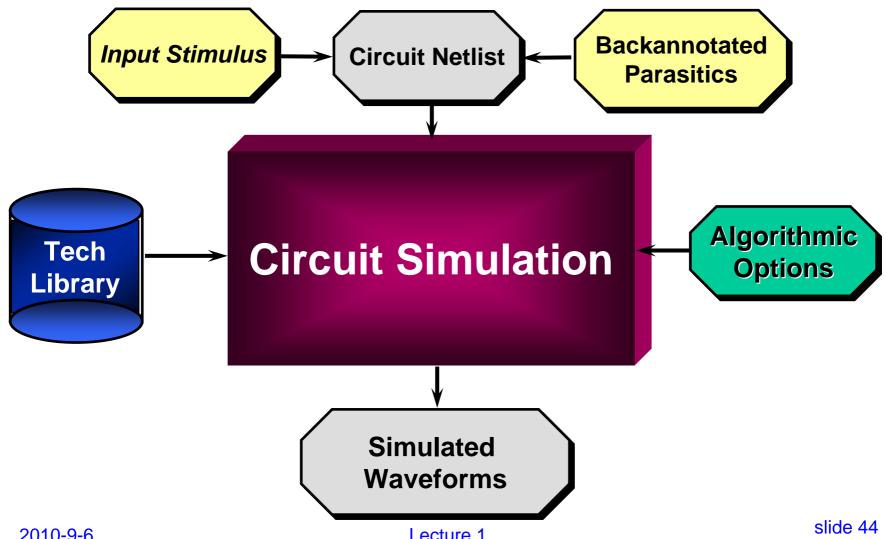
Circuit Simulation (cont'd)

- Simulation engine for analysis

- Linear solver
- Nonlinear iteration
- Time-domain analysis (transient)
- Frequency-domain analysis (frequency response)
- Harmonic Balance Analysis (in RF design)
- Noise analysis
- Sensitivity analysis
- Presenting waveforms to the user
 - Graphical plots; Text files
 - Scripts
 - Large amount of data !


A Brief History of SPICE

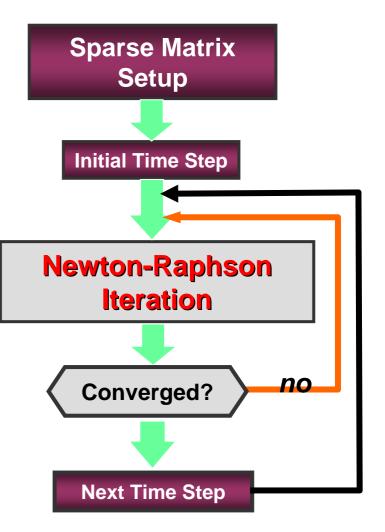
- · SPICE
 - Simulation Program with Integrated Circuit Emphasis
- Originally developed at UC Berkeley as a course project in the 1970's
- Once called CANCER:
 - Computer Analysis of Nonlinear Circuits Excluding Radiation (by Prof. Ronald Rohrer)
- PSpice = PC version
- **HSpice = Industry Standard**
 - Shawn & Kim Hailey, founders of Meta Software


Types of Analysis

- DC Analysis (single point)
- DC Transfer Analysis (DC sweep)
- AC Analysis (frequency-domain)
- Transient Analysis (time-domain)
- Noise Analysis (analog/RF)
- Distortion Analysis (analog/RF)
- Sensitivity Analysis (analog/RF)

Flow of Circuit Simulation

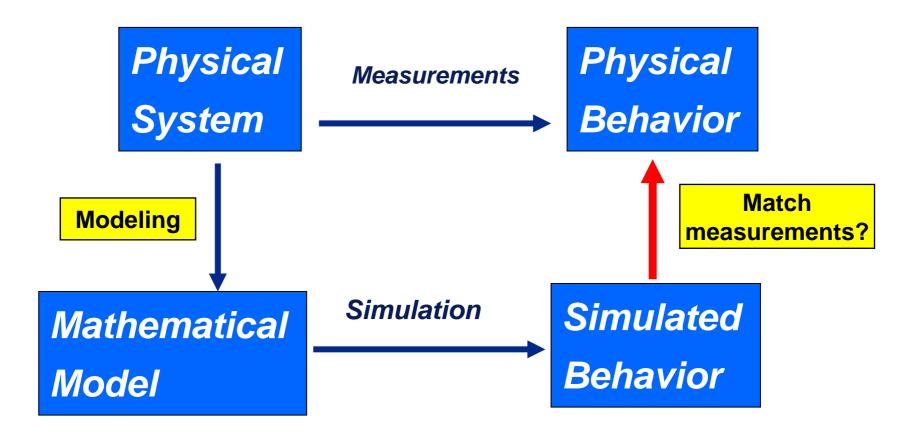
Circuit Simulator Components


2010-9-6

Lecture 1

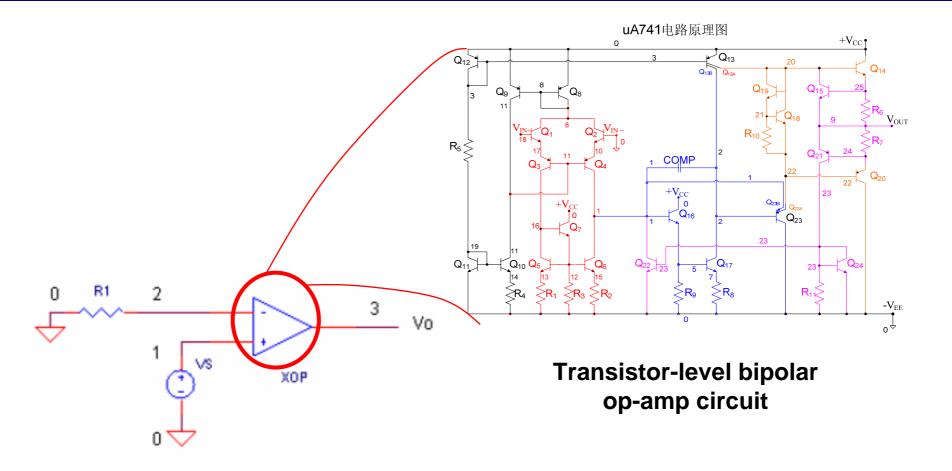
The Simulation Engine

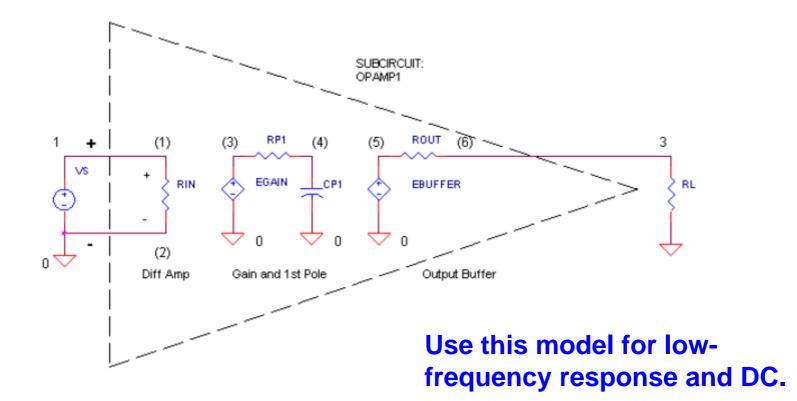
- Solving a "sparse" nonlinear system.
- Simulation speed depends on model and solver efficiency and simulator architecture.


$$C(x)\frac{dx}{dt} + G(x) = B(u)$$

Modeling vs Simulation

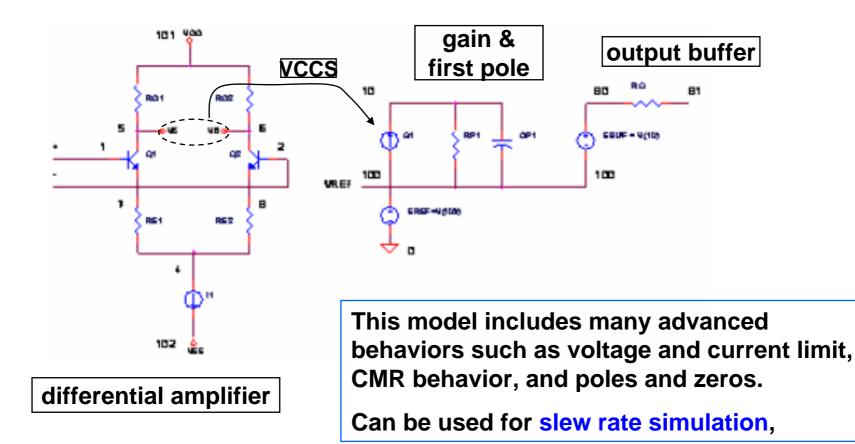
- Modeling is a big part of simulation.
- Spice simulation requires accurate but efficient models.
- IC devices (and interconnects) are getting increasingly complicated
 - in numbers and structure
- Simulation speed will never be "too fast"!



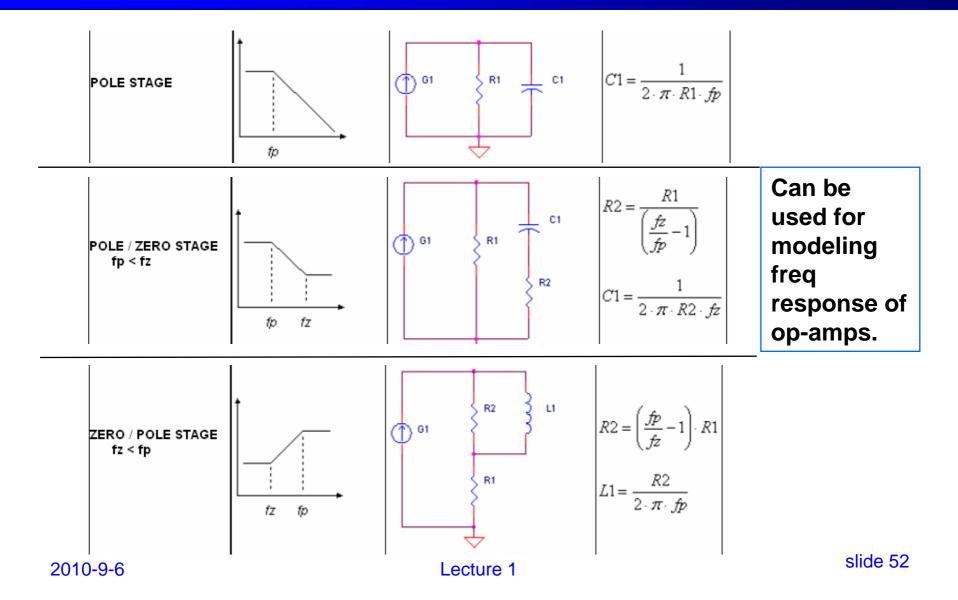


- Models are not just for simulation.
- Designers use lots of simplified macromodels to speed up analysis and prediction.
- Models in simulators are hard-coded; designers cannot simply change.
- Designers need skills and knowledge to develop good macro models.

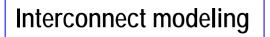
An Op-amp Modeling Example



Basic Op-amp Model

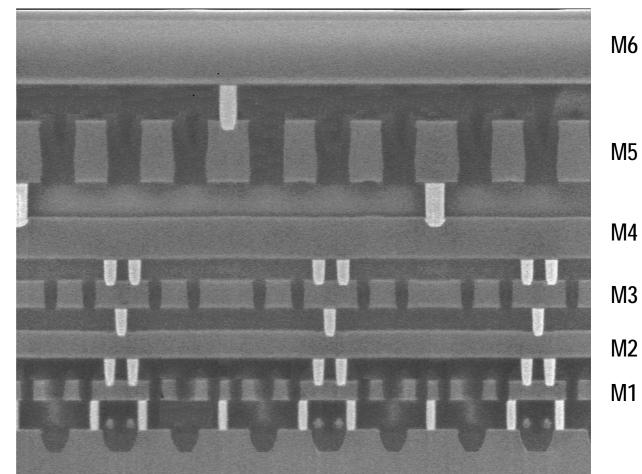


http://www.ecircuitcenter.com/OpModels/OpampModels.htm


Intermediate Level Model

Frequency Shaping Stages

More Advanced Modeling Needs

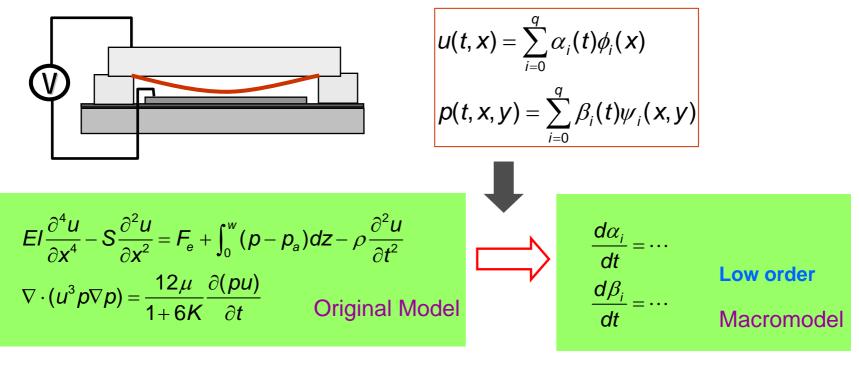


for

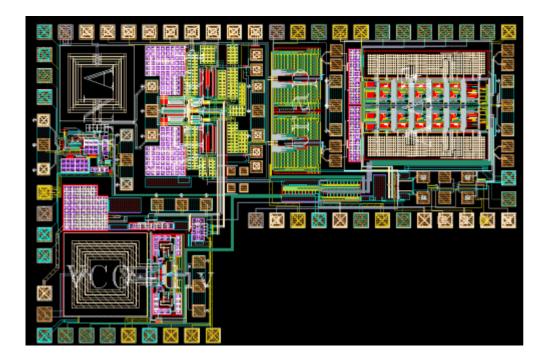
- -- Timing;
- -- Signal integrity;
- -- Power delivery; ...

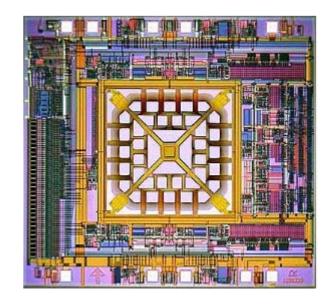
Main challenges:

- -- Complexity
- -- Huge scale



0.18 Micron, 6 Layer Technology Lecture 1


2010-9-6


Complicated Device Modeling

- MEMS devices fabricated with semiconductor devices.
- Accurate modeling uses partial differential equations (PDEs)
- Must use macromodels for fast simulation.
- May focus on the input-output behavior.

Multiple-Technology Integration

A MEMS Chip

A single-chip receiver

The existing design and fabrication problems that challenge the CAD engineers!

Emerging Challenges

- Multiple-technology integration is the future of the IC industry,
- which brings huge challenges for simulation
 - Modeling multiple physics devices (electrical, mechanical; optical; fluidic; biological; ...)
 - Model creation is much harder than semiconductor devices
 - Lumped element simulation not adequate
 - have to consider field-effect simulation
 - Modeling language from description to simulation code.
 - Macromodeling and soliving technology

Top 10 Algorithms in 20th Century

- 1. 1946: The Metropolis Algorithm for Monte Carlo.
- 2. 1947: Simplex Method for Linear Programming.
- 3. 1950: Krylov Subspace Iteration Method.
- 4. 1951: The Decompositional Approach to Matrix Computations.
- 5. 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable code.
- 6. 1959: QR Algorithm for Computing Eigenvalues.
- 7. 1962: Quicksort Algorithms for Sorting.
- 8. 1965: Fast Fourier Transform.
- 9. 1977: Integer Relation Detection.
 - A fast method for spotting simple equations satisfied by collections of seemingly unrelated numbers.
- 10. 1987: Fast Multipole Method.
 - A breakthrough in dealing with the complexity of n-body calculations, applied in problems ranging from celestial mechanics to protein folding.

From *Random Samples*, Science page 799, February 4, 2000.

- Course focus and skill set
- Course feature:
 - <u>Team work</u> and <u>project-based</u> learning
- Some basics on the EDA technology
- EDA is a good place to practice your past knowledge
 - From math to algorithms to software to IC design problems ...
- Prepare for your career
 - Graduate study or a job position ...