
2010-9-27 Slide 1

Introduction to Design AutomationIntroduction to Design Automation

Lecture 4. Lecture 4.
How to Write a How to Write a NetlistNetlist Parser?Parser?

Guoyong Shi, PhD
shiguoyong@ic.sjtu.edu.cn

School of Microelectronics
Shanghai Jiao Tong University

Fall 2010

2010-9-27 Lecture 4 slide 2

OutlineOutline
• Spice Netlist
• Netlist Parsing
• Parser Principle
• Flex and Bison
• Spice Netlist Grammar
• PCCTS
• Assignment 2 (parser)

2010-9-27 Lecture 4 slide 3

A A NetlistNetlist ExampleExample

Vs

R1 R2 R3

1

0

2 3

* SERIES CIRCUIT (comment line)

VS 1 0 5

R1 1 2 1K

R2 2 3 2K

R3 3 0 3K

.DC VS 6 6 1

.PRINT DC V(2,3) V(2) I(R2)

.END

start end

.DC VS 6 6 1

increment

2010-9-27 Lecture 4 slide 4

Parser PrincipleParser Principle
• A parser is used to extract structural

information from a text file.
• A netlist has a simple grammar that defines

the meaning of the circuit components.

netlist lexer
(extract atomic

information)

parser
(parse the context

according to grammar)

simulation
engine

flex yacc/bison

2010-9-27 Lecture 4 slide 5

Lexical AnalysisLexical Analysis
• Regular Expressions

(RE)
An expression is a string
of characters
RE is a set of chars or
meta-chars
REs are used for text
searching or string
matching

LF [\n]
DELIM [\t]
WS {DELIM}+
ALPH [A-Za-z_]
DIGIT [0-9]
ALPH_NUM {ALPH}|{DIGIT}
INTEGER {DIGIT}+
FLOAT
SIGN “+”|”-”
... ...

2010-9-27 Lecture 4 slide 6

Lexical AnalysisLexical Analysis
• The first line of a Spice netlist is always treated as a

comment line
• ([^\n])* -- any number of chars (“^”) excluding

<newline>
• “v”{ALPH_NUM}* -- a name string starting with "v"

defines a V_ELEMENT
• “r”{ALPH_NUM}* -- a name string starting with "r"

defines an R_ELEMENT

2010-9-27 Lecture 4 slide 7

FlexFlex
• A fast lexical analyzer generator

http://www.gnu.org/software/flex/manual
• Compile

% flex filename.lex
% flex –i filename.lex (case-insensitive scanner)

• Flex is still under development, see
The Flex Project: http://flex.sourceforge.net/
for the latest source code and documentation

http://www.gnu.org/software/flex/manual
http://flex.sourceforge.net/

2010-9-27 Lecture 4 slide 8

Flex Input FileFlex Input File
• Input file format

Definitions – defining string pattern names
%%
Rules – in pairs of [<matching pattern> <action>]
%%
User Code – copied verbatim to “lex.yy.c”.
-- containing routines called by the action part

2010-9-27 Lecture 4 slide 9

Grammar 1Grammar 1
• Suppose we’d like to process the expression

x1 = (1+2)*3;
• This is an arithmetic expression, and can be

evaluated.
• Suppose our expressions are allowed to have:

+, -, (,), =
NUM (integer numbers)
; (each expr ended by semicolon)

• Such expressions can be described by the following
grammar:

(next page)

2010-9-27 Lecture 4 slide 10

Grammar 2Grammar 2

• ID is an identifier (variable) for storing the expression
value.

• add_op & mul_op are operators “+” & “-”.
• The symbol “|” reads like “OR”.
• The symbol “ ” reads like “substitution”: LHS is

substituted by RHS.
• The 4 rules define a grammar structure.

L ID = E; L | empty
E E add_op T | T
T T mul_op F | F
F NUM | (E)

2010-9-27 Lecture 4 slide 11

Grammar 3Grammar 3
• L ID = E; L | empty
• This means we can have multiple expressions in the same

line,separated by ";". For example,
• x1 = 1 + 2; x2 = 2 * (3 + 4);

• A grammar looks like recursion. The “L” on the RHS of “ ” can
be substituted recursively by the mapping, until the point “L =
empty” is reached.

2010-9-27 Lecture 4 slide 12

Grammar 4Grammar 4
E E add_op T | T
T T mul_op F | F
F NUM | (E)

• These 3 lines define the expression structure.
• The line order is important; it specifies the computation priority.

Multiplication has the higher priority than Addition.

• The line at the bottom usually specifies the atomic expression;
i.e., cannot be decomposed further.

higher priority

2010-9-27 Lecture 4 slide 13

BisonBison
• A general-purpose parser generator
• Converts an annotated context-free grammar

in an LALR(1) parser or GLR parser
• Can be used to develop language parsers

from simple desk calculators
to complex programming languages

• http://www.gnu.org/software/bison/
• Upward compatible with Yacc

http://www.gnu.org/software/bison/

2010-9-27 Lecture 4 slide 14

Flex & BisonFlex & Bison
• Bison normally is used together with flex

flex as a lexical analyzer
bison as a grammar analyzer

• bison and flex are available in cygwin

• Create a flex file, say, example.lex
%flex example.lex (lex.yy.c)

• Create a grammar-action file, say, example.y
• Compile

% bison –d example.y
[-d] forces to generate example.tab.h & example.tab.c

2010-9-27 Lecture 4 slide 15

Bison Input FileBison Input File
• The input file for bison (“.y” file) is a grammar file.
• It mainly has three sections:

%{
C declarations -- copied verbatim
%}
Bison declarations
%%
Grammar rulesGrammar rules -- netlist grammar is parsed here
%%
Additional C code

2010-9-27 Lecture 4 slide 16

Grammar Parsing (Bison)Grammar Parsing (Bison)
• The “Grammar Rules” section is the place where the

actions are taken for the structural elements that
match the grammar.

L : ID {
printf("\n[bison] Result %s ", $1->name);

}
'=' E {

$1->value = $4;
printf("= (%d)\n", $4);

}
EOL L
| /* empty */
;

L ID = E; L | empty

action

action

referred to as $1

referred to as $4

Sample programs will be
provided in class (in
parser_drill/...)

2010-9-27 Lecture 4 slide 17

Flex Flex talks totalks to BisonBison
Communication between Flex and Bison

“R”{ALPH_NUM}* {
... ...
return (R_ELEMENT);
}

in flex file
“parse.lex”

R_ELEMENT
{ parseStartElement($<id>1, "res"); }
node node model_info

... ...
sym_assgn_value sym_assgn_list EOL
{ parseEndElement(); }

in bison file
“parse.y”

R1 1 2 1K

2010-9-27 Lecture 4 slide 18

LinkingLinking
• When linking with object files lex.yy.o,

xxx.tab.o, use
.............. -lfl ... (in cygwin/Linux ...)

Otherwise, you’ll see error:
... undefined reference to `_yywrap’

flex library

2010-9-27 Lecture 4 slide 19

PCCTSPCCTS
• PCCTS

Purdue Compiler Construction Tool Set
by Terence John Parr (PhD Purdue, 1993)
A C++ parser generator
Open source, well documented
Find it by going to Google

• ANTLR
ANother Tool for Language Recognition
A parser generator in PCCTS
First released 1992

• Terence John Parr, Language Translation using PCCTS and C++ (A
Reference Guide), Automata Publishing Company, San Jose, CA 95129.

2010-9-27 Lecture 4 slide 20

Assignment 2 (parser)Assignment 2 (parser)
This assignment is for on-line learning.
• Go to Internet, find some learning materials about

flex & bison.
• Do some flex/bison exercises on CYGWIN or your

Linux installation.
• Write a report on what you have done, including

some programs you have tried.
• You can attempt to write a netlist parser by printing

out what is parsed.
• Turn in your report to Moodle (or to TA) within a week.

2010-9-27 Lecture 4 slide 21

ReferencesReferences

1. T. J. Parr, Language Translation using PCCTS and
C++, A Reference Guide, 1993.

2. Online materials on compiler tools.

2010-9-27 Lecture 4 slide 22

AcknowledgementAcknowledgement
• Contributors to the open source software

tools used in this lecture are greatly
acknowledged.

	Lecture 4. �How to Write a Netlist Parser?
	Outline
	A Netlist Example
	Parser Principle
	Lexical Analysis
	Lexical Analysis
	Flex
	Flex Input File
	Grammar 1
	Grammar 2
	Grammar 3
	Grammar 4
	Bison
	Flex & Bison
	Bison Input File
	Grammar Parsing (Bison)
	Flex talks to Bison
	Linking
	PCCTS
	Assignment 2 (parser)
	References
	Acknowledgement

