
2010-11-19 Slide 1

PRINCIPLES OF CIRCUIT SIMULATIONPRINCIPLES OF CIRCUIT SIMULATION

Lecture 11.  Lecture 11.  
Stability of Numerical IntegrationStability of Numerical Integration

MethodsMethods

Guoyong Shi, PhD
shiguoyong@ic.sjtu.edu.cn

School of Microelectronics
Shanghai Jiao Tong University

Spring 2010



2010-11-19 Lecture 11 slide 2

OutlineOutline
• Absolute stability (A.S.)
• Convergence problem in transient simulation
• Numerical stability of three methods
• Region of A.S. for LMS methods
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Absolute StabilityAbsolute Stability
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Three Integration FormulasThree Integration Formulas
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All are iteration formulas.

The choice of “h” affects 
the convergence.

Different methods have 
different convergence 
properties.
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Absolute StabilityAbsolute Stability
• “Absolute stability” considers how the choice 

of step-size (h) affects the convergence of an 
integration method.

• Characterized by a convergence region in the 
complex plane.

• The convergence region is found by a simple 
test model.
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-( ) tx t e=

A Simple Test Model A Simple Test Model 
• Use a scalar model to test how local errors are 

accumulated:              

(0) 1x =

Test modelTest model

Find the voltage across R:

( ) ( )dx t x t
dt

= −
The exact solution is:

Initial condition:
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Why Choose a 1D Test Problem?Why Choose a 1D Test Problem?
• General nonlinear model (n-dimensional)

dx/dt = F(x) ;   x ∈Rn;
• Linearization:

dx/dt = Ax,      A = ∂F(x0) / ∂x  (Jacobian)

• Diagonalization:
∃ P,  P-1AP = Λ if all λi(A) are distinct;
Λ = diag (λ1, λ2, …, λn)
dξ/dt = Λ ξ,       x = Pξ (state transform)
dξi /dt = λi ξi ,   i = 1, ..., n    (scalar models)
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Test ProblemTest Problem
• All n-dimensional non-linear models can be 

characterized locally by scalar models:

x x :
•

= λ x(0) = 1;

λ∈

x∈

a complex number
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n 1n n 2x x 2h x
•

−−= +
n n-2

n 1
x - xx

2h

•

− =

x x,    x(0) 1
•

= − =

Test a numerical methodTest a numerical method
Suppose we use a method called “Explicit Mid-Point (EMP)”
for numerical integration;

Use this formula to solve the following test problem:
nxnx 2− nx 1−
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n 1n n 2x x 2h x
•

−−= +n n-2
n 1

x - xx
2h

•

− =

x x,    x(0) 1
•

= − =

0 0.1 0.2 0.3 9.9 10x 1, x .9, x .82, x .736, ..., x 44.0273186, x 48.6495411= = = = = = −

Diverges ...

Local Error AccumulationLocal Error Accumulation

Choose h = 0.1:    xn = xn-2 – 2h xn-1

x1 = x0 + hx’0 (Use Forward Euler for the 1st step)

Exact solution known:  

( ) tx t e−=
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MATLAB SimulationMATLAB Simulation
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>> h = 0.1;
>> t = [0, h];  x = [1, 1-h];
>> N = 50; for n = 3:N x(n) = x(n-2) - 2*h*x(n-1); t(n) = t(n-1) + h; end
>> plot(t, x, 'b-')
>> hold on
>> plot(t, exp(-t), 'r:')

Good accuracy at the 
beginning; 

but diverges finally.

What caused the 
problem?

h = 0.1
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What if choosing a smaller step ?What if choosing a smaller step ?

0 .01 .1 1 12x 1, x .99, ..., x .3679, ..., x .55, ..., x 12124.17839= = = = =

Still diverges  (why?)Choose  h = 0.01:

n 1n n 2x x 2h x
•

−−= +

01 0 0x x h x (1 h )x
•

= + = − (for the 1st step)

Will a smaller “h” make it stable?   --- actually not  !!
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MATLAB SimulationMATLAB Simulation
>> h = 0.01;
>> t = [0, h];  x = [1, 1-h];
>> N = 1000; for n = 3:N x(n) = x(n-2) - 2*h*x(n-1); t(n) = t(n-1) + h; end
>> clear figure
>> f2 = figure;
>> plot(t, x, 'b-'); hold on; plot(t, exp(-t), 'r:');

Good accuracy at the 
beginning; 

still diverges eventually.

h = 0.01
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The Reason  ?The Reason  ?

Loot at the iteration:

2 12 ,n n nx x h x− −= − ⋅ ( 0)h >

the characteristic equation

2 2 1 0hλ λ+ − =

Find the too roots (characteristic values):

2
1 1,h hλ = − + + 2

2 1 1h hλ = − − + < −

n n nc c h c2 12λ λ λ− −= − ⋅

Suppose   xn = c λn is a solution.

Substitute into the iteration:
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Check the Characteristic RootsCheck the Characteristic Roots

The general solution is: 1 1 2 2
n n

nx c cλ λ= +

where c1 and c2 are constants to be 
determined by initial conditions.

2 12 ,n n nx x h x− −= − ⋅

2
1 1,h hλ = − + + 2

2 1 1h hλ = − − + < −

The two characteristic roots determine the convergence of xn !

( 0)h >

(unstable)
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Plot the rootsPlot the roots

1 1 2 2
n n

nx c cλ λ= +

2
2 1 1h hλ = − − + < −

2
1 1,h hλ = − + +

1

1−

h

λ

1λ

2λ

unstable

Unless the initial condition makes 
c2 = 0, the iteration always diverges.
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(cont(cont’’d)d)

The initial conditions are: 

x0 = 1 (given);    x1 = (1-h)x0 = 1-h (by F. E.)

But if c2 = 0, we’ll get  h = 0 (which is not allowed.)
n

nx c1 1λ=

0=h

2 0c =

1 1 2 2
n n

nx c cλ λ= +

1 1c =
0 1x =

1 1x h= − 1 1 hλ = −

2
1 1,h hλ = − + +

1 1 hλ = −
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• Apply Forward Euler with h = 1:

• Apply Forward Euler with h = 3:

x x
•

= −

0 1 2 3x 1,x 0,x 0,x 0= = = =

0 1 2 3 4 5x 1,x 2,x 4,x 8,x 16,x 32= = − = = − = = −

(diverges)

h

Numerical BehaviorNumerical Behavior

However, Backward Euler and Trapezoidal Rule would 
not diverge.

Example:
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Stability RegionStability Region
• Use a simple test model x’ = 

λx (λ is complex) to 
determine a region for the 
step-size h

• Better if region is larger.

• Stability region can be 
derived algebraically. 

1 2

unstableunstable

q-plane

1
xx

1

z 1=
x

x
x

x x
•

= λ
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Characterization MethodCharacterization Method

1. Choose an integration method with step size 
“h > 0”.

2. Apply it to the test problem: dx/dt = λ x
3. Derive an algebraic characteristic equation.
4. Define a quantity:  q = λ h (as a complex 

number);
5. Find a region for q in the C-plane in which 

the integration method is stable.
• The region is called a “stability region”.
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Absolute StabilityAbsolute Stability

• An integration method is “absolutely stable”
if the stability region contains the point q = 0.
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Stability of Difference EquationStability of Difference Equation
•• Theorem:Theorem: The solutions of the difference equation

are bounded if and only if all roots of the characteristic equation

z1, …, zr (r is the number of distinct roots) are inside or on the 
complex unit circle { |z| ≤ 1 } and the roots with modulus 1 are of 
multiplicity 1.

1

z 1=
x

x
x

k

i k i
i

a x
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=
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k i
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a z
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=∑



2010-11-19 Lecture 11 slide 23

Forward EulerForward Euler

nn
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x x
•

= λ q h= λ

Char. eqn.
Region of Absolute Stability

Region of Absolute StabilityRegion of Absolute Stability

Numerical Stability:

Given λ < 0 (stable 
model),  choose h small 
enough to have a stable 
method

Im q

Re q

q-plane
1−2−

xx
0

q1 1+ ≤



2010-11-19 Lecture 11 slide 24

Numerical Stability:
q = λh lies in the left-half plane for 

Re(λ) < 0 (stable model).  
Hence |q-1| > 1.

Thus,  the method is stable for all h > 
0 as long as the model is stable.

However, for Re(λ) > 0 (unstable 
model), the numerical solution 
may be stable for h large.

nn

n nh
x h x
x x

n 1

1

x
   

•

−

−

= +

= + λ z(1 q) 1 0− − = 1z 1 1
1 q

≤ ⇔ ≤
−

Backward EulerBackward Euler
x x
•

= λ

1 2

unstableunstable

q-plane

1
xx

q h= λ

q 1 1− ≥
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Trapezoidal RuleTrapezoidal Rule

TR is stable when the model is 
stable

n nn n

n nn n

hx x x x

x x xh x

11

11
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2 1
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Trapezoidal RingingTrapezoidal Ringing

Problem:

If q= iα (pure imaginary), 
then the root is 
z = (1+iα)/(1-iα) |z| = 1. 

We get “trapezoidal ringing.”

t

Im(q)

unstable

Re(q)

stable x

x
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(difference equation)  

k k

n ii n i i
i i

x x
0 0

0
•

−−
= =

α + β =∑ ∑
•
x = λx

i n i i n ix xh 0− −λα + β =∑

Stability of LMS MethodsStability of LMS Methods

q
k

xi i n ii
0( )

0
α + β =∑ −=

Consider a Linear Multi-Step method

let  q = λh
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Difference EquationDifference Equation

n n n k
k kc q z q z q z1

0 0 1 10 ( ) ( ) ... ( )− −⎡ ⎤= α + β + α + β + + α + β⎣ ⎦

k k
k kz zq q q1

0 0 1 1( ) ( ) ... ( ) 0−α + β + α + β + + α + β =

n
nx c z= ⋅

• Check the stability of this difference equation

0in)xiqβ
k

0i
i(α =−+∑

=

(char. eqn.)
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Region of Absolute StabilityRegion of Absolute Stability
• The region of absolute stabilityregion of absolute stability of an LMS method is the set of q 

= λh (complex) such that all solutions of the difference equation

remain bounded as  n ∞ .

q
k

xi i n ii
( ) 0

0
α + β =∑ −=

• A method is “absolutely stable” if the stability region contains 
the point q = 0.

q = λh
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Region of Absolute StabilityRegion of Absolute Stability

For what values of q do all the k roots of this polynomial lie in 
the unit disc { |z| ≤ 1 } ?

k k
k kz zq q q1

0 1 1(1 ) ( ) ... ( ) 0−+ β + α + β + + α + β =

( )
( )

p zq
z

= −
σ

k k
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p z z z

z z z

1
1

1
0 1

( ) ...

( ) ...

−

−

⎧ = + α + + α⎪
⎨
σ = β + β + + β⎪⎩

( ) ( )k k k k
k kz z z zq1 1

1 0 1... ... 0− −+ α + + α + β + β + + β =
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Region of Absolute StabilityRegion of Absolute Stability

S q q p z z z{ | ( ) / ( ),   1}= − σ ≤

The “region of absolute stability” is defined by the set

1

z 1=

Mapping btw 
complex planes

0 qRe 

qIm 
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Conformal MappingConformal Mapping

Basic Results from Theory of Complex Variables
1.  Mapping –p(z) / σ(z) is conformal.
2.  Region of “left-hand side” (LHS) to Region of LHS.

p(z)
(z)

−
σ

q-plane

LHSjz e θ=

Z-plane

z 1≤
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Application to MidApplication to Mid--Point MethodPoint Method
•

−−= + n 1n n 2x x 2h x

2z 1 2qz= +

( )j jq z e e j
z

1 1 1 sin
2 2

θ θ θ−⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

( )
( )

p zq
z

= −
σ

1

z-plane

The stability region is just the interval 
[-j +j] on the jω axis.

Hence, the mid-point method is 
inherently unstable !

jz e ϑ=

1-1

1

-1

q-plane

unstable
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εε AnalysisAnalysis
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1 1
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⎨ ⎬⎢ ⎥+⎦ ⎣ ⎦⎩ ⎭

1

z-plane
je ϑ

(1 ) je ϑ+ ε
0ε > (1 ) je ϑ+ ε

0ε <

0;  if 0
0;  if 0

ε
ε

> >
< <

[ ... ] always > 1

1-1

1

-1

q-plane

The vertical line [-1, 1] is at 
the LHS of the blue ellipse 
and at the RHS of the red
ellipse.

0ε → ±

z to q
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Interpretation Interpretation -- 11
• For any point outside 

of the interval jsinθ in 
the q-plane, there exist 
two curves passing 
that point, one is 
mapped from a circle 
|z| > 1, the other from a 
circuit |z| < 1. 

1-1

1

-1

q-plane

2z 1 2qz= +

Poles:  1 2 1ρ ρ⋅ = −
Both inside & outsize of |z| = 1 
mapped to the region outside of 
the interval line.
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Interpretation Interpretation -- 22

1

z-plane
je ϑ

(1 ) je ϑ+ ε
0ε > (1 ) je ϑ+ ε

0ε <

1-1

1

-1

q-plane

Both inside and outside of the unit circle are mapped to the 
region outside of the interval  [ jsinθ ].

outside

inside
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