PRINCIPLES OF CIRCUIT SIMULATION

Lecture 11.
 Stability of Numerical Integration Methods

Guoyong Shi, PhD
shiguoyong@ic.sjtu.edu.cn
School of Microelectronics
Shanghai Jiao Tong University
Spring 2010

Outline

- Absolute stability (A.S.)
- Convergence problem in transient simulation
- Numerical stability of three methods
- Region of A.S. for LMS methods

Absolute Stability

Three Integration Formulas

$$
\text { FE } \quad y_{n}-y_{n-1}-h \dot{y}_{n-1}=0
$$

$$
\text { BE } \quad y_{n}-y_{n-1}-h \dot{y}_{n}=0
$$

\square

$$
y_{n}-y_{n-1}-\frac{h}{2}\left(\dot{y}_{n}+\dot{y}_{n-1}\right)=0
$$

LMS

$$
\sum_{i=0}^{k} \alpha_{i} y_{n-i}+h \sum_{j=0}^{m} \beta_{j} \dot{y}_{n-j}=0
$$

All are iteration formulas.
The choice of " h " affects the convergence.

Different methods have different convergence properties.

Absolute Stability

- "Absolute stability" considers how the choice of step-size (h) affects the convergence of an integration method.
- Characterized by a convergence region in the complex plane.
- The convergence region is found by a simple test model.

A Simple Test Model

- Use a scalar model to test how local errors are accumulated:

Test model $\quad \frac{d x(t)}{d t}=-x(t)$
The exact solution is:

$$
x(t)=e^{-t}
$$

Initial condition: $\quad x(0)=1$

Find the voltage across R :

$$
V_{C}(0)=0
$$

$$
\begin{aligned}
& C \frac{d\left(V_{i n}-V_{R}\right)}{d t}=\frac{V_{R}}{R} \\
& \frac{d V_{R}}{d t}=-\frac{V_{R}}{R C} \quad \square \quad V_{R}(0)=V_{i n} \\
& V_{R}=V_{i n} e^{-\frac{t}{R C}}
\end{aligned}
$$

Why Choose a 1D Test Problem?

- General nonlinear model (n-dimensional)
- dx/dt = F(x) ; $x \in R^{n}$;
- Linearization:
- dx/dt = Ax, $\quad \mathbf{A}=\partial \mathrm{F}\left(\mathrm{x}_{0}\right) / \partial \mathbf{x}$ (Jacobian)
- Diagonalization:
- $\exists P, P^{-1} A P=\Lambda$ if all $\lambda_{i}(A)$ are distinct;
- $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$
- $\mathbf{d} \xi / \mathrm{dt}=\Lambda \xi, \quad \mathrm{x}=\mathrm{P} \xi \quad$ (state transform)
- $d \xi_{i} / d t=\lambda_{i} \xi_{i}, \quad i=1, \ldots, n \quad$ (scalar models)

Test Problem

- All n-dimensional non-linear models can be characterized locally by scalar models:

$$
\begin{array}{ll}
\dot{x}=\underset{\uparrow}{\lambda x}: & x(0)=1 ; \quad x \in \mathbb{R} \\
& \lambda \in \mathbb{C} \quad \text { a complex number }
\end{array}
$$

Test a numerical method

Suppose we use a method called "Explicit Mid-Point (EMP)" for numerical integration;

$$
\dot{x}_{n-1}=\frac{x_{n}-x_{n-2}}{2 h}
$$

$$
x_{n}=x_{n-2}+2 h \dot{x}_{n-1}
$$

Use this formula to solve the following test problem:

$$
\dot{x}=-x, \quad x(0)=1
$$

Local Error Accumulation

$$
\dot{x}_{n-1}=\frac{x_{n}-x_{n-2}}{2 h}
$$

$$
x_{n}=x_{n-2}+2 h \dot{x}_{n-1}
$$

$$
\dot{x}=-x, \quad x(0)=1
$$

-Exact solution known:

$$
x(t)=e^{-t}
$$

- Choose $\mathrm{h}=0.1$: $\quad \mathrm{x}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}-2}-2 \mathrm{~h} \mathrm{x}_{\mathrm{n}-1}$
- $x_{1}=x_{0}+h x_{0}$ (Use Forward Euler for the 1st step)

$$
x_{0}=1, x_{0.1}=.9, x_{0.2}=.82, x_{0.3}=.736, \ldots, x_{9.9}=44.0273186, x_{10}=-48.6495411
$$

Diverges

MATLAB Simulation

What if choosing a smaller step?

$$
\begin{aligned}
& x_{n}=x_{n-2}+2 h \dot{x}_{n-1} \\
& x_{1}=x_{0}+h \dot{x}_{0}=(1-h) x_{0} \quad \text { (for the 1st step) }
\end{aligned}
$$

Choose h=0.01:
$x_{0}=1, x_{.01}=.99, \ldots, x_{.1}=.3679, \ldots, x_{1}=.55, \ldots, x_{12}=12124.17839$

Will a smaller "h" make it stable? --- actually not !!

MATLAB Simulation

The Reason ?

Loot at the iteration:

$$
x_{n}=x_{n-2}-2 h \cdot x_{n-1}, \quad(h>0)
$$

Suppose $x_{n}=c \lambda^{n}$ is a solution.
Substitute into the iteration:

$$
\begin{aligned}
& q \lambda^{n}=q \lambda^{n-2}-2 h \cdot q \lambda^{n-1} \\
& \lambda^{2}+2 h \lambda-1=0
\end{aligned}
$$

the characteristic equation
Find the too roots (characteristic values):

$$
\lambda_{1}=-h+\sqrt{h^{2}+1}, \quad \lambda_{2}=-h-\sqrt{h^{2}+1}<-1
$$

Check the Characteristic Roots

$$
x_{n}=x_{n-2}-2 h \cdot x_{n-1},
$$

The general solution is:

$$
x_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}
$$

where c_{1} and c_{2} are constants to be determined by initial conditions.

$$
\lambda_{1}=-h+\sqrt{h^{2}+1} \quad \lambda_{2}=-h-\sqrt{h^{2}+1}<-1 \quad(h>0)
$$

The two characteristic roots determine the convergence of x_{n} !

Plot the roots

$$
\begin{aligned}
& \lambda_{1}=-h+\sqrt{h^{2}+1} \\
& \lambda_{2}=-h-\sqrt{h^{2}+1}<-1 \\
& x_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}
\end{aligned}
$$

Unless the initial condition makes $\mathrm{c}_{2}=0$, the iteration always diverges.

(cont'd)

$$
x_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}
$$

But if $\mathrm{c}_{2}=0$, we'll get $\mathrm{h}=0$ (which is not allowed.)

The initial conditions are:

$$
c_{2}=0 \quad \square x_{n}=c_{1} \lambda_{1}^{n}
$$

$$
x_{0}=1 \text { (given); } \quad x_{1}=(1-h) x_{0}=1-h \quad \text { (by F. E.) }
$$

$$
x_{0}=1 \quad \square \quad c_{1}=1
$$

$$
x_{1}=1-h \quad \square \quad \lambda_{1}=1-h
$$

$$
\left.\begin{array}{c}
\lambda_{1}=1-h \\
\lambda_{1}=-h+\sqrt{h^{2}+1}
\end{array}\right\} \square h=0
$$

Numerical Behavior

$$
\text { Example: } \quad \dot{x}=-x
$$

- Apply Forward Euler with $\mathrm{h}=1$:

$$
x_{0}=1, x_{1}=0, x_{2}=0, x_{3}=0
$$

- Apply Forward Euler with $\mathrm{h}=3$:

$$
x_{0}=1, x_{1}=-2, x_{2}=4, x_{3}=-8, x_{4}=16, x_{5}=-32
$$

(diverges)

However, Backward Euler and Trapezoidal Rule would not diverge.

Stability Region

- Use a simple test model $x^{\prime}=$ λx (λ is complex) to determine a region for the step-size h
- Better if region is larger.
- Stability region can be derived algebraically.

Characterization Method

1. Choose an integration method with step size "h > 0".
2. Apply it to the test problem: $d x / d t=\lambda x$
3. Derive an algebraic characteristic equation.
4. Define a quantity: $q=\lambda h$ (as a complex number);
5. Find a region for q in the C-plane in which the integration method is stable.

- The region is called a "stability region".

Absolute Stability

- An integration method is "absolutely stable" if the stability region contains the point $q=0$.

Stability of Difference Equation

- Theorem: The solutions of the difference equation

$$
\sum_{i=0}^{k} a_{i} x_{k-i}=0
$$

are bounded if and only if all roots of the characteristic equation

$$
\sum_{i=0}^{k} a_{i} z^{k-i}=0
$$

z_{1}, \ldots, z_{r} (r is the number of distinct roots) are inside or on the complex unit circle $\{|z| \leq 1\}$ and the roots with^modulus 1 are of multiplicity 1.

Forward Euler

$$
\begin{aligned}
x_{n} & =x_{n-1}+h \dot{x}_{n-1} \quad \dot{x}=\lambda x \quad q=\lambda h \\
& =x_{n-1}+\lambda h x_{n-1} \\
& =x_{n-1}+q x_{n-1}
\end{aligned}
$$

Char. eqn.

$$
z-(1+q)=0
$$

$$
\square|z| \leq 1 \Leftrightarrow|1+q| \leq 1
$$

Region of Absolute Stability

Numerical Stability:

Given $\lambda<0$ (stable model), choose h small enough to have a stable method

Backward Euler

$$
\begin{aligned}
x_{n}=x_{n-1}+h \dot{x}_{n} & \dot{x}=\lambda x \\
= & x_{n-1}+\lambda h x_{n} \quad \square \\
& q(1-q)-1=0 \quad \square \quad|z| \leq 1 \Leftrightarrow\left|\frac{1}{1-q}\right| \leq 1
\end{aligned}
$$

Numerical Stability:
$q=\lambda h$ lies in the left-half plane for $\operatorname{Re}(\lambda)<0$ (stable model). Hence |q-1|> 1.

Thus, the method is stable for all $h>$ 0 as long as the model is stable.

However, for $\operatorname{Re}(\lambda)>0$ (unstable model), the numerical solution may be stable for h large.

Trapezoidal Rule

$$
\begin{array}{lll}
x_{n}=x_{n-1}+\frac{h}{2}\left(\dot{x}_{n-1}+\dot{x}_{n}\right) & \dot{x}=\lambda x & \left(1-\frac{q}{2}\right) z-\left(1+\frac{q}{2}\right)=0 \\
x_{n}=x_{n-1}+\frac{h \lambda}{2}\left(x_{n-1}+x_{n}\right) & \square & |z| \leq 1 \Leftrightarrow\left|\frac{1+\frac{q}{2}}{1-\frac{q}{2}}\right| \leq 1
\end{array}
$$

TR is stable when the model is stable

Trapezoidal Ringing

Problem:

If $\mathrm{q}=\mathrm{i} \alpha$ (pure imaginary), then the root is
$z=(1+i \alpha) /(1-i \alpha) \rightarrow|z|=1$.
We get "trapezoidal ringing."

Stability of LMS Methods

Consider a Linear Multi-Step method

$$
\sum_{i=0}^{k} \alpha_{i} x_{n-i}+\sum_{i=0}^{k} \beta_{i} \dot{x}_{n-i}=0
$$

$$
x=\lambda x
$$

$$
\sum \alpha_{i} x_{n-i}+h \lambda \beta_{i} x_{n-i}=0
$$

(difference equation)

$$
\sum_{i=0}^{k}\left(\alpha_{i}+q \beta_{i}\right) x_{n-i}=0
$$

let $q=\lambda h$

Difference Equation

- Check the stability of this difference equation

$$
\begin{gathered}
\sum_{i=0}^{k}\left(\alpha_{i}+q \beta_{i}\right) x_{n-i}=0 \\
\square x_{n}=c \cdot z^{n} \\
0=c\left[\left(\alpha_{0}+q \beta_{0}\right) z^{n}+\left(\alpha_{1}+q \beta_{1}\right) z^{n-1}+\ldots+\left(\alpha_{k}+q \beta_{k}\right) z^{n-k}\right] \\
\square \text { (char. eqn.) } \\
\left(\alpha_{0}+q \beta_{0}\right) z^{k}+\left(\alpha_{1}+q \beta_{1}\right) z^{k-1}+\ldots+\left(\alpha_{k}+q \beta_{k}\right)=0
\end{gathered}
$$

Region of Absolute Stability

- The region of absolute stability of an LMS method is the set of q $=\lambda h$ (complex) such that all solutions of the difference equation

$$
\sum_{i=0}^{k}\left(\alpha_{i}+q \beta_{i}\right) x_{n-i}=0
$$

remain bounded as $n \rightarrow \infty$.

- A method is "absolutely stable" if the stability region contains the point $\mathrm{q}=0$.

$$
\mathbf{q}=\lambda \mathbf{h}
$$

Region of Absolute Stability

$$
\left(1+q \beta_{0}\right) z^{k}+\left(\alpha_{1}+q \beta_{1}\right) z^{k-1}+\ldots+\left(\alpha_{k}+q \beta_{k}\right)=0
$$

For what values of q do all the k roots of this polynomial lie in the unit disc $\{|z| \leq 1\}$?

$$
\left(z^{k}+\alpha_{1} z^{k-1}+\ldots+\alpha_{k}\right)+q\left(\beta_{0} z^{k}+\beta_{1} z^{k-1}+\ldots+\beta_{k}\right)=0
$$

$$
q=-\frac{p(z)}{\sigma(z)}
$$

$$
\left\{\begin{array}{l}
p(z)=z^{k}+\alpha_{1} z^{k-1}+\ldots+\alpha_{k} \\
\sigma(z)=\beta_{0} z^{k}+\beta_{1} z^{k-1}+\ldots+\beta_{k}
\end{array}\right.
$$

Region of Absolute Stability

The "region of absolute stability" is defined by the set

$$
S \triangleq\{q|q=-p(z) / \sigma(z), \quad| z \mid \leq 1\}
$$

Conformal Mapping

Basic Results from Theory of Complex Variables

1. Mapping $-p(z) / \sigma(z)$ is conformal.
2. Region of "left-hand side" (LHS) to Region of LHS.

Application to Mid-Point Method

$$
\begin{aligned}
& x_{n}=x_{n-2}+2 h \dot{x}_{n-1} \\
& z^{2}=1+2 q z \quad z=e^{j \theta} \\
& q=\frac{1}{2}\left(z-\frac{1}{z}\right)=\frac{1}{2}\left(e^{j \theta}-e^{-j \theta}\right)=j \sin \theta
\end{aligned}
$$

The stability region is just the interval $[-j+j]$ on the $j \omega$ axis.

Hence, the mid-point method is inherently unstable !

ε Analysis

$$
\begin{aligned}
& q=\frac{1}{2}\left(z-\frac{1}{z}\right) \\
& =\frac{1}{2}\left\{(1+\varepsilon) e^{j \theta}-\frac{1}{1+\varepsilon} e^{-j \theta}\right\} \\
& =\frac{1}{2}\left\{\left[(1+\varepsilon)-\frac{1}{1+\varepsilon}\right] \cos \theta+j\left[(1+\varepsilon)+\frac{1}{1+\varepsilon}\right] \sin \theta\right\} \\
& \begin{array}{ccc}
& \begin{array}{l}
>0 \text {; if } \varepsilon>0 \\
<0 ; \text { if } \varepsilon<0
\end{array} & {[\ldots] \text { always }>1} \\
\text { 2010-11-19 } & \text { Lecture } 11
\end{array}
\end{aligned}
$$

Interpretation - 1

$$
z^{2}=1+2 q z
$$

Poles: $\rho_{1} \cdot \rho_{2}=-1$

- For any point outside of the interval jsing in the q-plane, there exist two curves passing that point, one is mapped from a circle $|z|>1$, the other from a circuit |z| < 1.

> Both inside \& outsize of $|z|=1$ mapped to the region outside of the interval line.

Interpretation - 2

Both inside and outside of the unit circle are mapped to the region outside of the interval [$j \sin \theta$].

