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Abstract—The shrinking technology feature size and dense
large-scale integration make process variation a challenging
issue directly confronting the latest design automation tools.
Process variation causes severe variation in interconnect
networks, including very large-scale integrated interconnect
structures, such as clock trees, clock mesh, power-ground
networks, and other wiring structures in 3-D integrated circuits.
The traditional moment computation techniques are only
partly useful for analyzing such variational problems, however,
their computational efficiency cannot meet the quickly rising
needs, such as statistical analysis. This paper presents a novel
symbolic moment calculator (SMC) for variational interconnect
analysis. The moment calculator is constructed in a regular data
structure that incorporates binary decision diagrams for data
storage and computation. Given an interconnect circuit, such a
computation diagram has to be constructed only once and can
be repeatedly invoked for computation of moments with varying
parameter values. Also, the SMC is friendly to interconnect
synthesis in that it can be incrementally modified according to
the modifications made to the circuit structure. Applications of
the SMC for fast moment computation, sensitivity analysis, and
statistical timing analysis are addressed. Significant efficiency is
demonstrated comparing to other existing methods.

Index Terms—Binary decision diagram (BDD), clock mesh,
incremental analysis, moment sensitivity, process variations,
statistical analysis, symbolic moment.

I. INTRODUCTION

HE progressively shrinking feature dimension of the

latest integrated circuit (IC) technology has brought the
process variation issue to the front-most scene. Process vari-
ation causes lots of issues in IC design and manufacturing
that used to be ignorable. Modern manufacturing technology
makes possible massive systems-on-chip integration, on which
the most complicated structure is the on-chip interconnect
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system. Before the next generation network-on-chip technol-
ogy becomes prevalent, the traditional metal interconnection
system would remain dominant in the near-future manufactur-
ing technology. Process variation has made the analysis and
synthesis of the interconnection systems tougher by using the
existing design automation tools.

Since the beginning of 1990’s, circuit moment computation
and its derivatives have been introduced for massive linear
interconnect network analysis [1], [2]. A few years later,
a swarm of publications making use of moments for
reduced-order modeling of massive interconnect systems have
appeared. Now, moment-based analysis has become a de facto
standard tool for a variety of circuit analysis tasks in place
of accurate SPICE simulation. As the variation issues arise
in more advanced fabrication technologies, another category
of publications have appeared addressing numerical moment
computation techniques for variational analysis. Representa-
tive techniques include: 1) interval algebra in reduced-order
modeling [3]; 2) symbolic model order reduction [4], [5];
3) variational asymptotic waveform evaluation model by
adjoint sensitivity [6], [7]; 4) moment methods for statistical
timing analysis [8]-[10]; and 5) moment methods for crosstalk
noise analysis [11], just to mention a few. Apart from the
works based on moment computation, there exist other works
applying implicit or explicit parametric moment matching
for wvariational interconnect analysis. Techniques along
this line are: 1) parameterized interconnect models using
multiparameter moment-matching [12]; 2) parameterized
model order reduction via a 2-D Arnoldi process [13];
and 3) parameterized interconnect order reduction with
multiparameter moment matching [14], among others.

An interconnect network can take a variety of forms,
being simple RC tree, capacitively and/or inductively coupled
RLC trees or mesh networks involving resistive links and
driven by multiple independent sources. These interconnection
structures cover most interconnect networks in practice. The
main objective of this paper is to develop a generic symbolic
moment calculator (SMC) that is applicable to the variety of
interconnect configurations.

Symbolic circuit analysis is traditionally considered a
technique of academic interest because most of the existing
techniques in the literature are based on enumeration.
However, it is partly the purpose of this paper to demonstrate
that the notion of symbolic moment calculation does not rely
on term enumeration at all. Instead, the symbolic moments
can be calculated from a computational structure directly
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constructed by a process of circuit decomposition whose com-
putational complexity is of cubic polynomial. This substantial
improvement in efficiency enables the possibility of applying
the SMC for large-scale interconnect network synthesis.

The rest of this paper will present progressively the
basic principles employed in symbolic moment computation.
Section II reviews some well-established recursive moment
formulas and reformulates them into binary decision diagram
(BDD) data structure. Section III addresses tree networks with
resistive links and multiple driving sources by applying the
Kron’s branch tearing technique. Some selected applications of
the SMC are presented in Section IV. This paper is concluded
in Section V.

Some preliminary results of this paper have been presented
in [15]-[17]. The main contribution of this paper is to stream-
line the previously developed incomplete results and formulate
a unified moment computation methodology in a single article.
In addition, more validating evidences are provided in the
experimental section.

II. BDD FORMULATION OF RECURSIVE
MOMENT COMPUTATIONS

Linear circuits can be described by the following general
linear differential equation in state-space form:
dx

E— + Ax = Bu

7 ey

)

where E and A are susceptance and conductance matrices,
B and F are the selection matrices consisting of elements
like 1, —1, and 0, u is a vector standing for the input
voltage/current sources, X is the circuit state vector, including
nodal voltages and branch currents, and y is the output vector.
The frequency-domain transfer function of the above system
from the input u to the output y is H(s) = F (Es +A)"' B.
The moment analysis technique arises from the expansion of
H (s) in a series of s’
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where the coefficients my’s are called the moments [1]. Since
certain electrical information of a network can be derived from
the moments, efficient moment computation procedures are of
great interest in applications.

Traditionally, the moments are computed recursively by the
following relations (assuming A is invertible):

no=A"'B, uc=(A""E) - @

where ur,k = 0, 1,2, ..., are called the state moments.
The input—output moments my are obtained from my = Fuy.
It is apparent that computation of the moments requires
solving the inversion of A, which is equivalent to a DC
solution of the linear network given appropriate sources. It is
well known that symbolically solving A~! is of exponential
complexity for a general matrix A. Hence, it is generally not
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Fig. 1. RLC tree.

recommended to compute symbolic moments by inverting
matrix A symbolically.

However, it has been recognized in the literature that
moments of those special linear networks, such as tree net-
works or capacitively and inductively coupled tree networks
etc., can be computed without solving matrices. For a tree-
structured RLC network shown in Fig. 1, where every serial
R-L branch has a connection to the ground by a capacitor
(called a grounding capacitor), its state-space model is of the
form in (1) and (2) where the coefficient matrices take the
following forms:

Cco 0 A 0
e [52)a- [ 4] o (4] v

where C and L are diagonal matrices comprised of the
capacitances C; and inductances L;, respectively, and R is
also a diagonal matrix comprised of the resistances R;. The
state vector x contains the nodal voltages as the first half for
the nodes grounded via the capacitors, and contains the branch
currents as the second half for the currents flowing through the
serial R-L branches. N is the total number of nodes grounded
by the C;’s (also equal to the total number of resistors and
inductors). The nodal voltages are considered as the outputs.
The matrix A is the incidence matrix of the serial R-L branches
and the matrix Iy is the N-dimensional identity matrix. The
input source vector u includes the independent current sources
connected across the grounding capacitors.

A. Recursive Moment Calculation for Tree Circuits

For an RLC tree as given in Fig. 1, by node i we always
refer to the node where the grounding capacitor C; is con-
nected. Let the tree be driven by a constant voltage Vi, = 1V
at the input. Let m; x be the kth order output (voltage) moment
at node i. It is known in the literature that any order moment at
any node i (called nodal voltage moment) can be computed
recursively by the following formulas [2], [18]:

= ¥ R G- X LY
ReeP; jeTy LeeP; JjeTy

k-2

()

for k > 2, where P; represents the path from the tree root to
node i, the summation index R; € P; means summing over
all the resistors R; on the path P;, T, denotes the subtree
rooted at node £, and the summation index j € T, indicates
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Fig. 2. Tllustration of a BDD triple.

the summation over all nodes belonging to the subtree Tp
(including the root of T;). The initial two orders of moments
are m; o = 1 for all i and

mi= D ReD C ©)

ReeP; jeTy

for all i. Note that the first-order nodal moments m; | are the
Elmore delays from the input to the node i for all i.

We see that formula (5) involves two summation terms of
the same form 3, . 7, Cj - mjx—1 with the two moment
orders (k — 1) and (k — 2). For convenience, we denote such
a summation term by

mgk = ZC,’ S k1 7
JeTe
and call it the capacitor moment because the C;’s are
multiplied. Then the moment recursion (5) becomes

mig= D Re-m{y— > Le-mf ®)

ReeP; LeeP;

where both summations follow the path P; from the tree root
to node i. The circuit interpretation of mg ¢ 1s a “current”
entering node i, which is the summation of currents of
magnitudes C; - mj ;1 distributed at all capacitors C; in the
subtree T;. The term >, L e P Ly -mg 4 18 interpreted as the
summation of voltage sources “generated” by the inductors
along the path P;. Hence, (8) is simply the Kirchhoff voltage
law applied to the path from input to the observing point i
with the driving voltage Vi, shorted.

The zeroth-order moment is the DC solution of the original
circuit. If there is an independent current source connecting
to an internal node, the capacitor moment in (7) at that
node is replaced by the value of the current source, then the
zeroth-order moments of all nodes are calculated via (8). The
independent sources do not appear again in computing the
higher orders of moments.

It is interesting to note that a tree is a successively branching
structure in that some computations propagating from the root
to the tree terminals can be shared. Let p(i) be the parent
node of node i [i.e., node i is a fanout of node p(i)]. Then
the moments computed from the tree root up to node p(i)
can be used for the computation of all moments at the nodes
fanned out from node p(i). Written in equation, the recursion
formula (8) becomes

mik =mpGik + Ri -m — Li -mf_, 9)

which means that the computation of all moments at any node
i fanned out from the node p(i) can reuse (or share) the
moment 1 (;y,x Which is computed at p(i).

Fig. 3. BDD-tree.

Equation (9) can be decomposed into two parts

R . R c

Mg = My T Ri-myy (10)
L . L C

Mk 2= Mpy = Li-miy (1)

where both right-hand sides consist of one multiplication
and one addition (subtraction). All such expressions can be
graphically computed by three nodes connected as in Fig. 2,
where the solid arrow indicates a multiplication and a dashed
arrow indicates an addition. When computing the right-hand
side of (11), we just substitute the top node R; by —L;. Putting
together the two triple-node calculations gives the moment
mig = mfk + mlLk

The basic computation involving three graphical vertices
(Fig. 2) can be programmed using a BDD [19], [20].
The BDD is different from a binary tree in that sharable
subtree are never created twice. This property perfectly
matches what we stated above in tree circuit moments where
the moment at a parent node can be reused by the fanout nodal
moments. Therefore, as the first contribution of this paper, we
formulate a BDD-based moment computation scheme for tree
circuits, which becomes a good foundation when we later deal
with other more general interconnect networks.

The BDD comprising of the R; vertices is hereafter referred
to as an R-BDD. An analogous BDD that computes the terms
involving —L; as given in (11) is hereafter referred to as an
L-BDD.

Expression (7) shows that the capacitor moments mgk
are computed from the corresponding subtrees. Hence, it is
convenient to implement a tree data structure topologically
identical to the tree circuit, which saves all such capacitor
moments in the tree nodes labeled by the C;’s. A bottom-up
tree traversal would compute all capacitor moments. Such a
data structure is referred to a C-tree hereafter.

Combining a C-tree with an R-BDD (and an L-BDD)
forms a computational diagram illustrated in Fig. 3, where
the bottom part consisting of the C; nodes is the C-tree
and the upper part containing the R; nodes is the R-BDD.
Each R; node in the R-BDD has a dashed arrow pointing
to its parent node R, (for addition) and a solid arrow
pointing at the C; node in the C-tree (for multiplication).
We point out that topologically the R-BDD has the
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identical structure as the C-tree except for the opposite
directions of the arrows and the algebraic meanings of
the arrows. A computational diagram consisting of an
R(L)-BDD and a C-tree is hereafter called a BDD-C-tree
diagram.

The BDD-C-tree diagram as illustrated in Fig. 3 can
recursively compute all triplets expressed in (10) and (11) by
cyclical traversals. Such a diagram is called the SMC in this
paper. The successive computation is executed as follows.
The zeroth-order moment vector mo = (myy,..., mN,O)T
is the DC solution of the tree circuit driven by unit
independent sources. The first-order moment vector
my = (my1,...,my1)] is computed by traversing the
SMC bottom-up with the C-tree nodes set to the values
of mfl (viewed as currents) and compute the values in the
R-BDD vertices from bottom-up. The higher order moments
ml k¢ (k > 2) then are computed by repetition: the R-moments

k are computed by setting the C-tree nodes to the
values of m¢, ik and traversmg the R-BDD bottom-up, while
the L-moments mz,k are computed by setting the C-tree
nodes to the values of mfk_l and traversing the L-BDD
bottom-up. Adding the moments at the corresponding R-BDD
vertices and L-BDD vertices produces the moments m;
fori = 1, ..., N. If the tree network does not contain any
inductors, i.e., an RC tree, the computation involving the
L-BDD as stated above can be omitted.

For a tree network containing N branches of RLC segments,
the memory complexity of constructing a SMC is O(N).
The time complexity for computing one order of moments
is also O(N). If the pth order moments are requested, the
computation time complexity is O (Np).

B. Recursive Moment Calculation for Coupled Trees

Signal integrity is a highly concerned issue in the current
digital IC design practice. One general method for the signal
integrity analysis is by modeling a set of interconnect circuits
connected in the form of capacitively and inductively coupled
RLC trees. A circuit connected in this form also can be
analyzed by moments, where it is again valid to compute
the moments recursively by traversing “coupled” BDD-C-tree
diagrams. The basic principle for recursive moment compu-
tation of coupled tree networks was described in [21]-[23].
As before, the coupling capacitors are equivalent to current
sources while the coupling inductors equivalent to voltage
sources. Hence, in essence the moment computation of capac-
itively and inductively coupled tree circuits does not have
drastic change in computational structures except for taking
into account of more sources connected to the respective
computational nodes.

Each individual tree in a set of coupled trees is labeled by a
Greek superscript a, £, etc. Hence, T* stands for the ath tree.
Node n? is the jth node in the tree T%, whereas before a node
refers to a tree intersection to which a grounding capacitor
is connected. PJ" refers to the path from the root of tree 7%
(denoted root (a)) to node n . A coupling capacitor connected

between nodes n and nf is denoted by Ca # If two inductors

L} and Lﬁ existing in two separated trees T% and T# are
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coupled, then the coupling is modeled by a mutual inductance

ij}.ﬂ = Kfj}.ﬂw/L? . Lﬂ where Ka # is the mutual inductance
coefficient. Fig. 4 shows an example of two coupled RLC trees.

The nodal voltage moments for trees with coupling can be
expressed by the following recursive formulas similar to what

we stated earlier in (8) and (7) [22]:

a o i
mip= 2, Rieomgi— 3
R} € P L} € P¢
J J
a a,p Cﬁ
x| Ly mfk 1t Z Mg -mps | (12)
L e cy
C,a _ a a a,p
miy = D, Clomia+ D > Clp
ng € T;" ng € T;" Cf/ c C?
a B

where m"‘ * denotes the kth order nodal moment at node n‘j"

and mC d denotes the kth order capacitor moment at node n%

The notatlon C{ in the summation index denotes the set of
coupling capacuors connected at node nj and the notation £
denotes the set of inductors mutually coupled with the inductor
L7. The other summation indices are self-evident. Because
the physical meaning of moments m? k1 18 voltage, the term
(m7 -1
the coupling capacitor

the node nf,

mf/ x—1) n (13) is just the voltage difference across

B
Crtrs

to the node nj . The role of the coupling inductors

as given by the term M . f, mg f_l generates a voltage in the

path where the inductor L“ exists.
Analogously to (9), the (12) also can be written
recursively as

_ o ,0! a,ﬂ
g = my o+ R -mG — L Z M;
., e LY
J J

which generates a current from

C.p

mSh. (14)

This recursive formula indicates that the computation can be
decomposed in successive triples as in (10) and (11), hence
can be represented again by a BDD.

The construction procedure is as follows: 1) construct
an R(L)-BDD-C-tree diagram for each individual tree and
2) add coupling links between the individual structures. Since
the inductive coupling exists between inductors, the corre-
sponding L-BDD nodes are linked. Similarly, the coupled
C-tree nodes also are linked. Fig. 5 shows such a coupled data
structure for moment computation of the coupled RLC tree cir-
cuit given in Fig. 4. The dash-dot lines in the middle represent
the coupling existing between the two BDD-C-tree diagrams.
The coupling links are used for computing the term of

a ,8 C.p
D M mi
B a
Lj, € Ej
in (14) and the term of
B B
Z Crv (m?,kfl - m(’/,kfl)

/,eCf

in (13).
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Root(l)
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1.2
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Fig. 5. Coupled R-BDDs and C-trees.

The initial zeroth-order moments of all nodes are the DC
solution of the coupled circuit, which can be solved for each
decoupled trees because the inductive and capacitive couplings
have no effects for the DC solution. These DC moments are
used for computing the coupling terms stated above for the
next order moment computation. It is noted that no extra
computational nodes have to be created for the inductive and
capacitive couplings except for making such linkage between
the computation diagrams constructed for the tree circuits.

III. BDD-BASED MOMENT COMPUTATION FOR MESH
CIRCUITS WITH MULTIPLE SOURCES

The moment computation procedures and diagrams
presented in the preceding section only work for analyzing
RLC trees or capacitively/inductively coupled RLC trees.
When resistive links exist between any tree nodes, new
analysis procedures have to be developed. Since resistively
linked circuits widely exist in digital IC, such as clock
mesh or power-ground networks [24], [25], developing a
symbolic moment computation method is of significance for
application.

The objective of this section is to develop a unified compu-
tational diagram that can be applied for computing moments of
RLC trees with resistive links, while the previously developed

R2,3 3

1 R, 2
L, M

M
G
R
5 06
MWV
Gs

Fig. 6. Tree-type circuit with a resistive link R3 ¢.

BDD-C-tree diagram can be reused. A fundamental technique
that plays the key role in this regard is a technique known
as the Kron’s branch tearing [26]. The basic idea of Kron’s
tearing is to decompose a network with a resistor link Rjink
into two networks, one with Rjinx removed and the other with
Riink replaced by a current source. If all existing R-links in
a network are processed by successive decompositions, the
original network would end up with a set of networks without
resistive links but driven by current sources at different nodes.
Such purely current-driven tree-structure networks can be
analyzed symbolically by the means of moment computation
already developed in Section II-A.

The Kron’s branch tearing technique was first applied by
Ratzlaff et al. [2] to handle resistor links for matrix inversion
in the RICE work. Later Lee et al. [27], [28] introduced a
BDD-based decomposition process that greatly improves the
computational efficiency. The work [16] further enhances the
computational efficiency by pointing out that the tree circuits
resulted from tearing all links are simply current-driven
RC-tree networks that can be analyzed in terms of moments
by symbolic BDD-C-tree computational diagram. The next
two sections contribute a systematic development on how a
mesh circuit driven by multiple sources can be analyzed by
the means of symbolic moments.

A. Kron’s Tearing and Mesh Decomposition

The circuit shown in Fig. 6 is used to illustrate the basic
notation and procedure involved with Kron’s tearing. The
circuit has a single driving current source and a resistive link
R3 ¢ connecting nodes 3 and 6. By removing the resistor link,
the circuit becomes an RC tree.

According to the principle of Kron’s tearing, solving the
circuit shown in Fig. 6 is equivalent to solving the two
RC-tree circuits shown in Figs. 7 and 8, where the circuit
in Fig. 7 is just the circuit in Fig. 6 with the R-link R3¢
removed, while the circuit in Fig. 8 is the result of removing
the R-link R3¢ while placing two opposite-polarity current
sources of value Ir at the two terminals of Rz, which is
equivalent to replacing R3¢ by a current source of Ig.

Let Rynk be the link resistor to be removed. The magnitude
of the current source of /g is computed by [26]

0
V[glinl

= Rk (15)
Riink + Rt

Ir
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1 R12 2 R23 3
Isl 1 H ﬁ
$ (@3]
;L = I°€ I
= :Rl4 - = -
Rys Rs6
4 5 6
A% M
c Hcs ﬁcﬁ
L L L

Fig. 7. Circuit with the branch R3 ¢ removed.

where V( n) is the cross voltage at the terminals of Rjinx with
Riink removed and Ry, is the Thevenin equivalent resistance
seen at the port of Rjjpx. By definition, the Thevenin equivalent
resistance Rty is calculated by setting /g to unit current while
turning off all other sources, solving the DC nodal voltages
V,E?q) = VISA) - Vq(A) gives the Thevenin resistance Rr. Here,
we use the superscript () to indicate that the voltages are
computed when the two port currents are set to unit current
(1A), i.e.,, Ig = 1A. Consequently, Ry, = V,E,Aq). With a
BDD-C-tree diagram, the computation of Ry, is executed by
setting in the C-tree C, = C; = 1 and all other capacitors
to zero values. The calculated zeroth-order moments at nodes
p and g give rise to VISA) and Vq(A)

In summary, the computation of both Vlgl i and R7j, in (15)
can use the same BDD-C-tree dlagrarn which is constructed
only once. With the quantities Vl Vl , and Ir computed

by the BDD-C-tree diagram, the nodal Voltages of the original
circuit, with the resistor link placed back, are computed by

Vi= v g vA. (16)

The computation principle described above can be extended
to the computation of higher order moments. Noticing that all
moments being computed are just the coefficients in the Taylor
expansion of the voltage transfer functions, we see that in
general the kth order moment at node i for a network with one
resistive link can be computed analogously by the following
formulas:

m@) (4)

Rk = Mok — Mgk (17)
m@ (0)
K~ Mpk
Iryx = Mok = pk (13)
Riink + Rrpk
and
o A
mij = m,(,k) — IRk 'mf,k) (19)
fori =1, , N, where we assume that the link resistor Rjink

is connected between nodes o and f. Note that the superscripts
(©) and () in the above equations reserve the same meaning
as before.

The Kron’s tearing essentially involves two operations, one
s “IA source substitution” and the other is “link opening.”
Hence, BDD is a natural data structure of representing the
binary decomposition [27]. If more than one link exists in the
network, the tearing process can be repeated and a BDD can be
constructed which is called a tearing-BDD. It was found later
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Fig. 8. Circuit with the branch R3¢ replaced by two current sources /g
and —Ig.

2
e A

3

Mesh circuit with multiple sources.
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Fig. 9.

on that a mesh network driven by multiple independent sources
can be treated by the same technique as well [17].

B. Moment Computation for Mesh Circuits With Multiple
Sources

Severe process variation exists in the current nanometer
fabrication technology. To avoid significant timing variation
in the tree-structured clock networks, a new design technique
called “clock mesh” has been introduced recently for balanced
clock delivery [24]. More recently, interests in clock mesh
analysis and synthesis arise [29]-[31]. A mesh network could
be driven by many sources applied at a portion of mesh
nodes. Synthesis and verification of such mesh systems require
efficient mesh analysis methodology and algorithms. Running
a SPICE simulator repeatedly for such purpose is considered
too costly. Some work attempted to use model order reduction
for mesh synthesis, but encountered difficulty in handling mul-
tiple driving sources [29], [30]. The second main contribution
of this paper is to extend the link tearing procedure in the
preceding section to multiple-source-driven mesh networks.

As a matter of fact, a nonideal voltage source driving any
internal node of a mesh can be modeled by a driving current in
parallel with a source resistance (i.e., the Norton equivalent).
An example circuit is given in Fig. 9, which illustrates the
possible configuration of a mesh circuit. A grounding resistor
can be teared just as a link resistor by placing one unit current
source directed from the tearing node to the ground. Following
this idea, a unified tearing-based decomposition procedure can
be formulated after introducing appropriate notations.

For the example given in Fig. 9 with two current sources,
one current source is selected as the driving source for a
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(0.4)

Fig. 10. Tearing-BDD for the circuit given in Fig. 9.

spanning tree network. By keeping the source I;1, we shall tear
the grounding resistor Ry> and the link resistor R3 ¢ so that the
network becomes a tree circuit and the BDD-C-tree diagram
can be used for moment computation. The tearing procedure
results in the BDD shown in Fig. 10, which keeps the record
of the tearing process. Each BDD vertex is attached a tuple,
which is a good notation for indexing the tearing sequence.

The tuple (R3,6, Rs2+I52) at the root indicates that the two
resistors R3¢ and Ry are to be teared in the listed order. The
reason of writing Ry + Iy is because Ry will be substituted
with an open branch or a 1A current during tearing. In this
sense, the role of Ry, is analogous to the role of current
I>, which are added together to manifest the superposition
principle.

The tearing order follows the sequence listed in the tuple
(from the left to the right). Hence, the resistor R3¢ is teared
before the resistor Ry>. The tearing of the resistor R3¢ results
in the two derived circuits marked by the tuples (A, R;2) and
(0, Ry + Iy») labeled to the BDD vertices in the second
row. The tuple (A, R;2) means that the resistor R3¢ is
substituted by a unit (1A) current while the current source I
must be turned off for the purpose of computing the Thevenin
resistance. On the other hand, the tuple (O, Rgy+ I2) simply
means that the resistor R3¢ is removed while the rest is
retained.

In the next step, the resistor Rs» is teared. The two
intermediate circuits at the middle layer would generate the
three tree circuits at the bottom layer. The left-most tuple
(A, O) means that grounding resistor R is removed. The
middle tuple (O, A) is pointed by two solid arrows from
the preceding (middle) layer. The left arrow means that the
resistor Ry, is substituted by a unit current source with
all other current sources switched off while the right arrow
carries the same meaning. Both arrows stand for the Thevenin
resistance computation. The rightmost tuple (O, Is2) results
from removing Ry>. The existence of one vertex in a lower
layer being shared by all solid arrows coming down from
the preceding layer is a general property, which holds in
all tearing-BDD layers (excluding the root). This important
property essentially simplified the binary decomposition and
makes the BDD representation an efficient means.

In addition to representing the sequence of Kron’s tearing,
each tearing-BDD vertex must perform the computation given
in the formulas (17)-(19) for the zeroth-order moments.
The moments marked with superscripts (?) and (4 are

(RZS’RS("R.VZ +I.c2)

\ open

(O,R.R

3627 52

+1,)

(4,0,0) (0,4,0) (0,0,4) (0,0,1,)

Fig. 11.  Tearing-BDD resulting from adding a new resistor link R; 5 to the
circuit given in Fig. 9.

accessed from the two child vertices. When computing the
higher order moments, all those tearing-BDD vertices marked
with an (A) do not have to update the computation, because
these circuits still are driven by a single unit current source,
we do not need to substitute the capacitors by current sources
(due to the Thevenin principle).

The decomposed circuits at the bottom layer of the tearing-
BDD are an identical RC-tree circuit but driven by different
current sources at the places marked with a single unit current
source (A) or with the independent sources I;. Those tree
circuits driven by a single unit current source have to be
computed only once in the computation of the zeroth-order
moments. Consequently, only those tree circuits driven by
the independent sources have the need of recomputation with
the capacitors substituted by appropriate current sources. This
is another important property inherent in the tearing-BDD
computational diagram.

Summarized in the following steps is the symbolic moment
computation procedure for a mesh circuit driven by multiple
sources.

C. General Symbolic Moment Computation Algorithm

Step 1: Select one primary source and find a spanning tree,
which spans the original circuit and is rooted at the
primary source.

Construct a BDD-C-tree diagram for the spanning
R(L)C-tree.

Construct a tearing-BDD using the Kron’s tearing
process for all the link resistors and the grounding
resistors.

Evaluate the derived tree circuits at the bottom
vertices of the tearing-BDD whose tuples include
one single source (either an “A” or an indepen-
dent current source) by invoking the BDD-C-tree
diagram with one C-tree node substituted by the
corresponding current source value.

Evaluate the zeroth-order moments of the vertices
in the tearing-BDD from bottom-up using the
formulas (17)—(19). The moments superscripted
with (A) [respectively, with (O)] are calculated

Step 2:

Step 3:

Step 4:

Step 5:
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from the circuit at the child vertex pointed by the
solid (respectively, dashed) arrow.

Repeat Steps 4 and 5 to compute the moments of
the next requested order. Recompute the moments of
those tree circuits driven by the independent sources
with the capacitors substituted by the previously
computed moments and propagate upwards the
tearing-BDD vertices affected.

For a mesh circuit with K resistor links (including the
grounding links), the total number of vertices to be constructed
in the tearing-BDD is > X "'t = 1/2(k + 1)(K + 2),
which grows quadratically. At each tearing-BDD vertex, all
nodal voltages of the network must be updated once using
the formula (16). Suppose the mesh has N nodes and the
maximum number of links does not exceed N. Then the total
computational cost for computing the zeroth-order moments of
such a mesh circuit is of the polynomial complexity O(N?3).
For higher order moments, this complexity is lower because
only K + 1 tearing-BDD vertices have to be updated.

Before ending this section, we point out that the order of
tearing the resistor links does not affect the size of the tearing-
BDD, because the tearing mechanism is based on linear
superposition, which is commutable. This order-independent
property can be made use of in incremental interconnect
network synthesis, such as inserting an additional resistor link.
For example, we would like to add a new resistor link Ry 5
into the circuit in Fig. 9, connecting nodes 2 and 5. If the
tearing-BDD for the original circuit is already constructed as
given in Fig. 10, then the new tearing-BDD does not have
to be reconstructed, rather a slight modification applied to
the existing tearing-BDD would result in a new tearing-BDD
for the link inserted circuit, which is shown in Fig. 11. In
the new tearing-BDD, we see that a new root vertex Ry 5 is
created and following that one additional vertex is added to
each tearing-BDD layer, to which the attached label indicates
that the resistor Rp s is substituted by a unit current (A)
(see the left-most vertex in each layer in Fig. 11).

Step 6:

IV. PERFORMANCE EVALUATION AND APPLICATIONS

So far we have presented the main construction procedures
for a SMC. This computation scheme is based on the recursive
computation of a tree-structured circuit and successive tearing
of a set of resistive branches. Different orders of moments can
be computed by repeatedly traversing the same hierarchically
linked computation diagram, which consists of a C-tree at the
bottom, an R(L)-BDD in the middle, and a tearing-BDD at the
top. All nodes (tree nodes or BDD vertices) in the computation
diagram have correspondence to the circuit elements. Hence,
as soon as the circuit elements change their values, these
values can substitute the SMC node values instantly and a
re-execution of SMC computes the new moments of different
orders.

The SMC has many applications, with the main application
targeted at statistical interconnect analysis and synthesis, such
as fast statistical computation of interconnect timing/crosstalk
metrics, sensitivity analysis, and topological interconnect
synthesis like wire sizing and adding/removing intercon-
nect segments. To demonstrate the potential of the SMC
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Fig. 12. Buffer model [35].

applications, this section is dedicated to an investigation of
the following three aspects.

1) We show via experiments that the SMC is a much faster
symbolic analyzer than one of the best traditional BDD-
based analog circuit simulators [32]. We also show that
the SMC has better computational efficiency in repeated
computations than HSPICE.

2) We outline an important application of SMC in the
moment sensitivity analysis, which can easily be imple-
mented based on the traceable symbolic data structure
in SMC.

3) We provide an experimental study on the application of
SMC in statistical timing analysis, where we discuss the
efficiency and accuracy issues as well.

A. SMC Efficiency Evaluation

We have implemented a C++4 program of SMC. All the test
data reported in this section were collected from a computer
with Intel Quad 3G CPU and 16GB memory, running a Redhat
Enterprise Linux 4 operating system. We tried to use realistic
interconnect models as close as possible to what industry uses.

The interconnect resistance and capacitance models are
borrowed from [33]

R=p — 20

P (20)

C—i. 21 soey n (w — 0.5 - h)epe, 21
ln(tox/h) Tox

where [, w, h, t,x, €0, and &, are, respectively, the interconnect
length, width, height, inter-layer dielectric thickness, dielectric
constant, and relative permittivity. The interconnect inductance
model is from the predictive technology model [34]

o -1 2 1 0.22(w+h)
L= | 10w
r [“(w+h)+2+ I (22)

with the parameters [ = 50 ym, w = 0.28 ym, h = 0.32 um,
fox = 0.5 um, go = 8.85418 x 10712 F- m~!, &, = 3.9, and
uo = 4m x 1077 H/m.

A large interconnect system may have buffers inserted. The
buffer model used in this paper is a two pole approximation
shown in Fig. 12 [35]. The parameter values of Ry, Ry, C1, Ca
are obtained, using HSPICE optimize functions from the real
gate delay characteristics of the Nangate 45-nm open cell
library [36].

Nine industrial-level interconnect circuits were used for
testing the SMC efficiency, six of them were purely tree
structure circuits while three of them were mesh circuits
containing different numbers of resistor links. The scales of
the test results are listed in the third to fifth columns of Table I.
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TABLE I
EFFICIENCY TEST OF THE SMC

Circuit No. No. No. SMC Moment| Sens.
Ckt . R constr.
# type elem. | drivers| links ) eval. (s) | eval. (s)
1 RC tree | 1404 1 0 0.06 0.007 0.01
2 RC tree | 8404 1 0 0.29 0.04 0.08
3 RLC tree| 2104 1 0 0.08 0.01 0.06
4 RLC tree| 12606 1 0 0.32 0.04 0.32
5 RC 3006 3 0 0.07 0.02 0.07
coupled
6 RLC 1 3506 | 2 0 | 006 | 002 | 006
coupled
7 RC mesh| 1209 30 104 11.12 0.10 0.91
8 RC mesh| 3586 63 143 62.38 0.43 6.77
9 RC mesh| 7973 130 298 599.5 0.88 30.05

Listed in the column SMC Constr. are the SMC construction
time, which is required for only once for each circuit. As
expected, the construction time measures for those mesh
circuits are much larger than those for the tree circuits.
Recall that the complexity of the tearing-DDD construction
in SMC is cubic polynomial. The computation time measures
for moments from the zeroth order up to the fourth order
at all circuit nodes are listed in the column Moment Eval.
It is noted that the moment evaluation time is proportional
to the constructed SMC size, because the evaluation of each
order of moments requires a traversal of the whole SMC.
Clearly, the evaluation time measures are generally fractions
of the construction time measures. The last column lists the
sensitivity evaluation time, which will be explained later in the
next section where the sensitivity computation is discussed.

For the purpose of efficiency comparison, we further per-
formed some experiments of using the existing symbolic tools
for moment computation. The software used for comparison
all were run on the same computer where the SMC was run.

Equation (4) indicates that general moments can be com-
puted by matrix inversion. If we directly use a general-purpose
symbolic toolbox for matrix inversion, the computation effi-
ciency would be very bad. For example, we generated a modi-
fied nodal analysis (MNA) matrix for a small mesh circuit with
1209 elements (Ckt #7 in Table I) and used the commercial
MATLAB symbolic toolbox to compute its matrix inversion.
It took the toolbox over 8 h to generate the symbolic inverse
matrix. In general, it is not recommended to use any general-
purpose symbolic toolbox for large-scale circuit analysis.

Another published symbolic tool which is dedicated to
circuit analysis is the determinant decision diagram (DDD)
algorithm [32], which is selected for comparison because it
is one of the best performance symbolic simulators in the
literature. The key technical component of DDD is to compute
the symbolic solution of the form A~!5 by the Cramer’s rule,
which is constructed symbolically by determinant expansion.
For better efficiency, the determinant expansion is programmed
using a BDD, which has the benefit of sharing all common
sub-determinants (minors). The BDD sharing mechanism is
the most crucial mechanism that improves the symbolic analy-
sis efficiency of DDD.

DDD running time
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Fig. 13. DDD computation time for one frequency response for a set of

smaller tree circuits.

However, even with the help of an advanced BDD data
structure, the best complexity of DDD is still exponen-
tial for most practical circuits, unlike the polynomial com-
plexity with SMC. The critical difference is that DDD
computes the circuit DC solution via determinant expan-
sion, while SMC computes the circuit DC solution with
a circuit-based decomposition, whose complexity has been
proven to be cubic polynomial. The theoretical com-
plexity estimates can be justified by numerical tests on
circuits.

We used a set of small RC tree circuits containing the
number of elements from 600 to 1800 for comparing the
runtime speeds of DDD and SMC. Fig. 13 shows the quick
exponentially rising computation time. For comparison, we
used another set of much larger RC-tree circuits containing
the number of elements from 200K to one million (1M) to
test the SMC runtime speed. Fig. 14 shows that not only the
computation time grows linearly, but the absolute computation
time is also much less than that needed by the DDD solver
in solving those smaller circuits. For example, the SMC
computation time for the 1M element circuit was only about
8 s, while the DDD time for the circuit containing only 900
elements took about 7 s. In this experiment, we tuned the DDD
to a fast mode where the symbolic transfer function H (s) was
constructed in the s-expanded form [37].

Although both DDD and SMC use the BDD for the
symbolic data representation, there exist some critical
differences in addition to the complexity estimates mentioned
above. The first critical difference is that DDD normally
constructs a symbolic transfer function for one input and
one output. If multiple output nodes are considered (such
as solving all nodal voltages of a tree circuit), then DDD
has to be invoked for the number of times equal to the
number of outputs. Although one may create a multiroot
BDD to enforce data sharing, the complexity increase would
normally degrade the overall DDD performance in dealing
with multioutput circuits. In contrast, the SMC by construction
can automatically compute all nodal moments of the same
order by one traversal of the SMC computational diagram,
which is more efficient than DDD.

The second critical difference between DDD and SMC is
related to the requirement of symbol ordering. When DDD
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SMC running time
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Fig. 14.  SMC computation time for four orders of moments for another set
of larger tree circuits.

expands a determinant and constructs a BDD, the order
of expansion (selecting one matrix entry before another) in
general affects the resulting size of BDD, which further affects
the BDD evaluation time. However, the optimal order for a
minimum BDD is unknown in general. In contrast, the SMC is
built directly from decomposing the circuit topology, in which
the constructed BDD size is independent of the order of tearing
the links. This is another critical factor that differentiate the
performance of SMC from DDD for large-scale circuits.

Remark 1: Although, the SMC we proposed has substan-
tially improved the computational efficiency comparing to the
traditional MATLAB symbolic toolbox and the advanced DDD
solver, we are aware of the fact that the cubic polynomial
complexity is still high for extremely large interconnect mesh
networks appearing in the contemporary IC. Further perfor-
mance enhancement of SMC must be developed by introduc-
ing hierarchical schemes, for which the tearing mechanism we
applied in this paper can be explored. The technical details will
be presented in another work.

The last efficiency test is to compare the numerical com-
putation performance between SMC and HSPICE (version
2007.09). As we observed in (4), the nodal moments of an
RLC circuit are a sequence of DC solutions of the same
circuit by substituting those inductors and capacitors with
appropriate voltage sources and current sources whose values
are determined by the moments computed for the previous
order [1]. Although HSPICE does not provide directly the
moment computation functionality, we used it for experi-
ment purpose to measure the DC simulation time if some
given orders of moments are to be computed by HSPICE.
We assumed a scenario of interconnect synthesis where the
interconnect sizes are to be adjusted. When the RLC values
change, the LU factorization must be performed repeatedly
in HSPICE, which also invokes the repeated setup of the
MNA matrix. We compared the HSPICE time involved in
such a scenario of computation needs to the SMC repeated
computation time, excluding the one-shot SMC construction
time which is not comparable to HSPICE. The time measure-
ments are listed in Table II, where up to the fifth order of
moments was computed. We see that the SMC is superior to
HSPICE simulator in repeated numerical computations, which
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TABLE II
EFFICIENCY COMPARISON BETWEEN SMC AND HSPICE
FOR NUMERICAL MOMENT COMPUTATION

Ckt Circuit Moment | HSPICE
# Type Eval. (s) | Eval. (s)
1 RC tree 0.007 0.08
2 RC tree 0.04 0.52
3 RCL tree 0.01 0.31
4 RCL tree 0.04 1.98
5 RC couple 0.02 0.47
6 RCL couple 0.02 8.03
7 RC mesh 0.10 0.20
8 RC mesh 0.43 0.53
9 RC mesh 0.88 1.57

is a commonly requested analysis in statistical interconnect
analysis and synthesis.

B. Symbolic Moment Sensitivity

Symbolic moment computation is different from numerical
moment computation in that a regular data structure is con-
structed and preserved in the computer memory throughout
the tool running duration. The maintenance of a computa-
tional data structure is beneficial to both repeated numerical
evaluation and sensitivity analysis. In this section, we explain
how the sensitivity analysis can be implemented on a SMC.
The sensitivity of moment with respect to a set of selected
parameters is calculated based on the derivative chain rule. The
SMC linked data structure can facilitate the implementation
of the chain rule provided that appropriate extra memory is
allocated for storing the intermediate derivative values at the
C-tree nodes and the BDD vertices. Using other computational
techniques like automatic differentiation could be an option.
However, an implementation based on an existing SMC is
more efficient and straightforward.

There exist numerical sensitivity computation techniques
in the literature [7], [38], [39]. When repeated sensitivity
computations are required, such as for wire sizing [40], a
symbolic implementation is more advantageous.

The moment sensitivity can be computed by numerically
evaluating the following gradient vectors of moment with
respect to the selected resistors or capacitors

T
Vimik := [0mix/ORy, ..., 0mix/0Ry, |

T
Vemig := [0mix/0C1, ..., 0mix/0Cy,]

where R and C are the vectors containing the selected
R;’s and C;’s, g1 and gy are, respectively, the total numbers
of R;’s or C;’s selected for sensitivity analysis. In the case of
a tree circuit, taking the gradient of the moments with respect
to R or C in the (9) (ignoring inductances) gives

Vamix = Vampox + Vi (Rl- mf’k) (23)

Vamix = Vempax + Va (Rl- mfk) 24)
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where by (7) the gradients V3 (R; ~mick) and Vz(R; .miCk)
can be written, respectively, as

Vi (Ri .mfk)z Z (iCjmjs—1+RiCjVimji_1) (25)
JeT

z (Ri€jmjj—1 + RiC;jVemjx—1)
jeT

Ve (R,- mfk) -
(26)

where ¢; is the ith basis vector in the g; or g, dimensional
space. Equations (23) and (24) are the basic equations for
the computation of resistive sensitivity and the capacitive
sensitivity, respectively. Also, we can compute the second-
order derivatives as listed below

V%mi,k = V%mp(i),k'f‘ z (Eicjvﬁmj,k—l +R,‘CjV12$mj,k_1

jeT
+ECjm i) 27)
Vimi = Vimpok+ > (2Rié;Vem i
jer
+ R,-c,-vgmj,k_l) (28)

VeVemik = VgVemp(k
+ Z (Ei?fjmj,k—1 + Rié;Vim; i1

jeT
—i—giCjV(}m]',kfl + RiCjVEV(}m]"k,O.
(29)

The higher order moment derivatives can be calculated
analogously by continuing the chain rule. In most applications
using derivatives up to the second order would be sufficient.
If inductors are involved, the moment derivatives with respect
to inductances can be established analogously.

The moment gradients given in (23) and (24) indicate that
the gradient computation can be implemented based on an
existing SMC because the fundamental sequence of compu-
tation has not changed, except for the requirement of certain
extra gradient vectors attached to the SMC vertices for saving
the intermediate gradient values. The bottom-up propagation
of the intermediately computed gradient vector still follows
the SMC data structure, as seen from the (23) and (24).

In the case of a mesh circuit with resistor links, the gradient
vector computation would have to take in account of the
special computation defined by (19) for each tearing-BDD
vertexes (see Fig. 10). Taking gradient operation of (19)
leads to

0] A A
Vemig = Vam(Q = Vilgy-m\y) = Igi - Vam'y)  (30)

where x is any parameter selected for sensitivity. Since Ig
in the above expression is given by

m@ _ m(®
i = G
Riink +mg, o —mp
: (0) (A)
VIR can be computed in terms of Vym; .’ and Vym;,’,

which are in turn computed and saved with the descendent
tearing-BDD vertices.

As far as the computational complexity is concerned for
the sensitivity, there is no substantial complexity increase
except for extra memory required for saving the intermediate
gradient vectors at the associated SMC vertices. As the number
of the sensitivity parameters increases, the total sensitivity
computation time would increase proportionally to the number
of SMC vertices.

One special advantage of the SMC-based symbolic sensitiv-
ity calculation is that the moment sensitivity can be computed
simultaneously with the moment values during the bottom-up
traversal, which is clear from the derivative formulas derived
above.

The experimental efficiency evaluation of the SMC sensitiv-
ity is given in the last column of Sens. Eval. in Table I, where
both first- and second-order sensitivities of moments up to the
fourth order were computed. Six parameters were chosen in
the sensitivity gradient calculations.

C. Application to Statistical Timing Analysis

The purpose of statistical timing analysis is to extract
the approximate timing distribution as fast as possible given
probability distributions of the variational interconnect para-
meters. In general, this is a computation-intensive problem
because the accurate relationships between the interconnect
parameters and the timing metrics are very complicated and
usually must be measured by numerical simulations. Digital
IC synthesis requires fast timing metric evaluation routines to
enable iterative optimizations. In the statistical scenario, a fast
statistical timing mechanism is the enabling technology for an
efficient synthesis flow.

A variety of techniques have been proposed in the literature
for the statistical interconnect timing analysis. The majority of
them use certain metrics measured by moments, typically up to
order two. A few timing metrics that have been demonstrated
useful are for example the D2M metric [41] that calculates
delay using two moments, and the S2M metric [42] that
calculates slew rate also using two moments. Whenever the
timing metrics are computed in terms of moments, the SMC
developed in this paper can greatly improve the efficiency
of repeated computation and can help to establish the timing
distribution with a very fast computation strategy.

Some other design metrics in digital IC, such as crosstalk
and power etc. also can be computed in terms of moments.
For a focused demonstration, we only address in this section
the application of SMC to statistical timing analysis, while the
other design metrics also can be treated with a similar strategy.

The empirical D2M metric was proposed by Alpert et al. in
[41] for computing the delay at all nodes of an RC-tree circuit,
which was demonstrated to be more accurate than what Elmore
delay could predict. The D2M metric is given by the following
equation:

2

miy
tp2m,i = In(2)—= (32)
/Mi2
where m; 1 and m; > are the first- and second-order moments
at node i. It is evident that the statistics of the delay metric
tpam,i can be computed as long as the statistics of the two

moment are computed.
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TABLE III
ACCURACY OF DELAY COMPUTED BY
THE D2M METRIC WITH SMC

Case Type Rel. ave. err.
1 RC tree 0.19%
2 RC tree 0.39%
5 RC coupled 0.35%
7 RC mesh 0.72%
8 RC mesh 0.95%
9 RC mesh 1.12%
120
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Fig. 15. D2M delay metric relative error of all nodes in case 1.

Nine test circuits listed in Table III were used for validating
the proposed computation mechanism. We first demonstrate
that the D2M metric is sufficiently accurate for the timing
analysis of all nine test circuit. The two orders of moments
in the D2M metric were computed by SMC. The accuracy
of the delays estimated by the D2M metric was verified by
the HSPICE transient simulation results and the following
formula:

DM — ISPICE

Rel. Error := (33)

ISPICE
was used to calculate the relative errors. For each test case, the
relative errors of all nodes were averaged over the number of
nodes. Listed in Table III are the averaged D2M relative delay
errors. The accuracy of the D2M estimation seems acceptable.
Since the D2M delay might have different errors at different
nodes in a circuit, we provide the histogram plot in Fig. 15,
which shows the counts of nodes whose delay falls within a
bin of relative delay error. It seems that the majority of node
delays are accurately estimated by the D2M metric.

The original D2M was proposed for delay estimation given
an ideal driving step input. If the driving signal is a ramp
signal, then the D2M metric should be modified for better
accuracy. Reference [43] proposed the following formula for
the 50% delay estimation:

tay = —a)ym; +a - tpam (34)
where
5
2my — m? ?
o= M2 T (35)

2my —m3+t%, /12

sl,in
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TABLE IV
STATISTICAL TIMING ANALYSIS PERFORMANCE

Case | Ckt Type Rel. error SMC Speedup
over
Time HSPICE
Mean | Std. Var. ) MC
1 RC tree 0.54% 0.27% 1.1 5620
2 RC tree 0.51% 0.55% 5.0 4456
5 RC 0.52% 0.33% 2.0 5290
coupled
7 RC mesh 1.33% 1.41% 12.6 518
8 RC mesh 1.52% 1.48% 68.8 171
9 RC mesh 1.87% 1.65% 622.1 50
0.2
& - & - Second Order Model
£\ HSPICE Monte Carlo
0.15] [ R
> J \
= 14 Q
-(% 017 |
§ | L3
o / \
005 § Q
/ Y
/ LW .
Vad A = DO
00—¢ ' ' ===0-0-0-¢0909090
0.5 1 1.5 2 25 3 3.5
Delay (s) x 1077
Fig. 16.  Delay distribution computed by the ramped D2M metric (34)

with the second-order parametric approximation (36) and the accurate delay
computed by HSPICE for one test case. The delay was measured at one node.

m is the Elmore delay, tp2p is the ideal D2M delay, and #y i,
is the input slew time. This ramped delay metric is used in
the following experiment to validate the application of moment
sensitivities computed by the SMC for speedy characterization
of timing distribution.

The buffer model shown in Fig. 12 is used for a statistical
timing test. The buffer model parameters R;, Rz, Ci,
and C; are considered random variables. Also the interconnect
width w and height & are considered random variables as
well. Suppose all the random variables are subject to Gaussian
distribution. In our experiment, the random variables were
sampled with the 3¢ variation equal to 30% perturbation.
The input slew was chosen to be # ;, = 30ps.

The moment sensitivity we developed before can be used
for computing an approximate polynomial expression for
variational delay characterization. Similar approximation tech-
niques were used in [10], [44], and [45] as well. Let x be the
vector of parameter deviations from their nominal values. Let
the ramped D2M delay expression in (34) be approximated by
the following second-order Taylor expansion:

ta,r(x) = 1g.-0) + £, (O)x + x" 1] . (0)x (36)

where 74.,(0) is the ramp-input D2M delay obtained at the
nominal parameter values, t; (0) and 77 (0) are, respectively,
the first- and second-order derivatives of the ramped delay
evaluated at the nominal parameter values. They are computed
via the moment sensitivity by taking derivatives of (34).
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Experiment shows that this second-order approximation is
adequately accurate for characterizing statistical delay distrib-
ution, while the computation speed is significantly enhanced.
Shown in Table IV is the moment-based computational speed
performance compared to HSPICE Monte Carlo computation
running on 10000 samples, with the six parameters mentioned
above chosen for variational sampling. The speedup measure
lowers for the three mesh circuits, which indicates more com-
putational cost with SMC for mesh circuits. As an illustration,
the probability density function computed by the proposed
method is also adequately close to the Monte Carlo accurate
computation result, as seen from one snapshot in Fig. 16.

Remark 2: Note the computational complexity for full
mesh circuits is in order O(N3). This complexity is still too
high for very large-scale mesh synthesis in the current tech-
nology. For practical use of the proposed symbolic moment
computation, a hierarchical strategy is a potential solution.
The solution developed in this paper for multiple-source-
driven circuits can be utilized for developing a hierarchical
construction. The limitation of this paper length does not allow
us to get into the details in this regard further.

V. CONCLUSION

Since the proposal of symbolic model order reduction in [4],
little progress has been made on this subject mainly because
several key steps in the standard model order reduction
procedures, such as matrix inversion and vector orthogonal-
ization, etc., cannot be solved symbolically without running
into exponential complexity. Despite the existing difficulties,
a notable progress made in this paper is the proposal of
a symbolic moment computation scheme, which implements
the symbolic construction from the original circuit, rather
than from mathematical formulations, such as modified nodal
analysis matrices. It turned out the methodological innova-
tion is able to completely reduce an exponential complexity
problem into a polynomial complexity problem, making
the symbolic approach to interconnect network synthesis a
tractable problem. Although, a cubic complexity algorithm
for full mesh circuits is still not handy for practical clock
mesh synthesis, it was expected that a little further research
effort would finally come up with a set of applicable symbolic
synthesis methodology.
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