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Abstract— IC design automation relies on macromodels for intercon-
nect analysis. For simulation speed, low-order macromodels are in general
preferred. Besides rational macromodels, explicit delay components e

−τs

are of special interest in interconnect timing. This paper investigates
new approaches to modeling interconnects in the form of multiplying a
rational function by a delay component. Fitting-based techniques are used
both in the time-domain and in the frequency-domain for the purpose
of hybrid modeling using sampled data. A technique for passivity test is
also introduced. Examples are given to demonstrate the effectiveness of
the proposed methodology.

I. INTRODUCTION

Since the publication of the widely cited AWE paper [1], vast
amount of research effort in the CAD community has been dedicated
to rational modeling of interconnect systems in the frequency domain.
Specifically, one would like to derive a rational form of transfer
function

H(s) =
β(s)

α(s)
=

b0 + b1s + · · · + bmsm

a0 + a1s + · · · + ansn
, (1)

which approximates the input-output behavior of any given linear
interconnect model with adequate accuracy in the frequency domain.
Issues related to this goal include: 1) How to compute the coefficients
in the rational function efficiently and robustly? 2) How to guarantee
the stability and passivity of the derived model?

One may derive a low-order rational model either from a high-order
state-space model, or from a set of sampled data describing the input-
output characteristic of an interconnect system. Direct model order
reduction from a state-space model was considered solved after the
publication of the paper [2], while the computation issue related to the
sampled data modeling still receives quite some attention. Problems
regarding stability and passivity guarantee are not considered well-
solved due to the the extra computations involved.

To further speed up simulation, one would normally choose the
model order n (n ≥ m) in (1) as low as possible, as long as the
model does not lose the required accuracy in application. Recently, it
has been widely recognized that propagation time over interconnect
in IC design is becoming more significant as the silicon feature
size further shrinks. This has motivated many authors to consider
extracting the delay element explicitly before deriving a rational
model. This treatment would in general bring two advantages: one
for delay characterization such as in critical paths or clock networks,
and the other for simulation speed up. An early work on frequency
dependent transmission line models with explicit delay elements was
presented in [3]. Research on lossy transmission line modeling using
hybrid phase-pole macromodel was proposed in [4]. The authors of
[6] proposed analytical formula based method for estimating line
delay; they derived delay formula from the moments of a second
order circuit, then extended this formula to arbitrary order circuits.

An effective methodology for delay extraction remains a debatable
issue. This paper proposes a delay identification method based on
the extraction of non-minimum phase zeros and a two-round fitting
procedure using sampled data for hybrid modeling.
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II. CONCEPTUAL ALGORITHM

We restrict our discussion to single-input and single-output (SISO)
linear system. Any such system can be represented in state-space form
as j

ẋ(t) = Ax(t) + bu(t)
y(t) = cTx(t) + du(t)

(2)

where x(t) ∈ R
N is a column vector denoting the state, u(t) and y(t)

are scalar input and output, respectively. Both b and c are column
vectors of the same dimension as x(t). d is a scalar representing the
feed through gain. It is generally assumed that the system dimension
N is so large that directly using this model for simulation would not
be efficient. Hence, it has been a common practice to develop another
approximate low-order linear model as a substitute for simulation.

Because of its convenience and viability, most rational reduced
order modeling techniques derive a rational model in the form of (1)
from the original state-space model, which is more or less a mature
subject. A less mature subject is to derive from a given linear system
(2) (or a set of measured data) a hybrid model of the following form

H(s) = e−τs β(s)

α(s)
= e−τs b0 + b1s + · · · + bmsm

a0 + a1s + · · · + ansn
, (3)

where e−τs represents a delay term. This task becomes more
challenging if the original system is multi-input and multi-output
(MIMO). The difficulty arises from the fact that the unknown delay
τ appears nonlinearly with the unknown polynomial coefficients bi’s
and ai’s, hence cannot be identified all together simultaneously. This
issue becomes more intricate for the MIMO models. However, the
advantage of having a model in the hybrid form (3) is that the rational
model order n is likely to be much lower and the explicit delay τ
can directly be used for timing.

The key idea of this paper comes from a basic observation on the
delay term e−τs. For s = jω, we have |e−τjω| = 1 for all ω, i.e.,
the all-pass property. If approximating e−τs by an all-pass rational
function, we may choose a stable rational function in the following
form

e−τs ≈
PK(s)

QK(s)
=

QK

i=1(s + q∗i )QK

i=1(s − qi)

�

= ε(s), (4)

where * indicates complex conjugate and all Re(qi) < 0. Substituting
the rational expression for e−τs into the hybrid form (3) results in
another purely rational function. Hence, the problem of deriving a
hybrid macromodel (3) can be solved in the following steps:

Hybrid Macromodeling Algorithm

Step 1: Use any rational modeling technique to derive an approx-
imate rational model of the original system.

Step 2: If the identified rational model has zeros in the right-half
complex plane, then collect all such non-minimum phase
zeros and form a rational expression in the form of (4) as
an approximation of the delay term e−τs.

Step 3: Remove the delay term e−τs from the original model (or
data) and do another round of rational modeling to get a
lower-order rational model.

Step 4: Combine the two parts identified in the preceding two steps
to obtain a hybrid model.
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Step 5: Check stability and passivity. Repeat the procedure if
needed.

III. REVIEW OF FITTING ALGORITHMS

There are two major approaches to rational modeling in the
literature; model-based and data-based. The methodology developed
in this paper is data-based; i.e., our hybrid models are derived from
the sampled data either in the time-domain or in the frequency-
domain.

Fitting techniques have been widely used in data-based rational
modeling. In this paper we choose a special type of iterative fitting
algorithms, the Vector Fitting (VF) algorithm [7], a reformulation
of the Sanathanan-Koerner algorithm ([8], [9]), and its time-domain
variant Time-Domain Vector Fitting (TDVF) [10]. We shall use
examples to demonstrate that both algorithms are applicable for
hybrid macromodeling with explicit delay extraction.

The VF algorithm assumes that a frequency response function
H(s) can be approximated by a rational function in expanded partial
fractional form

H(s) ≈
nX

i=1

ci

s − ai

+ d, (5)

where {ai} and {ci} are unknown poles and residues, respectively,
and term d is an unknown constant. (We have dropped the derivative
term hs in (5) for simplicity.)

The VF or SK algorithm is to iteratively solve a sequence of linear
least-squares problems, where in each step the poles are identified
first and the residues are identified followed by. A weighting factor
in rational form

σ(s) =

nX
n=1

ci

s − ai

+ 1 =

QN

i=1(s − zi)QN

i=1(s − ai)
, (6)

is multiplied to the given frequency response so that the following
equality holds for the given frequency points in the least square sense

σ(s)H(s) =

nX
i=1

ci

s − ai

+ d. (7)

This identity implicitly assumes that the zeros of σ(s) are identical
to the poles of the rational representation of H(s). Since the poles
are known (or arbitrarily chosen in the first step) in (7), the unknown
residues can be identified easily by linear least squares.

The formulation of Time-Domain Vector Fitting (TDVF) [10]
assumes that a pair of input excitation x(t) and output response y(t)
is known satisfying the input-output relationship Y (s) = H(s)X(s).
Then, according to (7), the following equation holds

σ(s)Y (s) =

(
nX

i=1

ci

s − ai

+ d

)
X(s), (8)

which takes the following form in the time-domain

y(t) +

nX
i=1

ciyi(t) = dx(t) +

nX
i=1

cixi(t), (9)

where the sequences yi(t) are defined by the convolutions

yi(t) =

Z t

0

eai(t−τ)y(τ )dτ (10)

and similarly for xi(t). The unknowns in (9) are solved again by a
least squares procedure using the data sampled from the signals x(t)
and y(t) at the selected time points tk. The zeros solved for σ(s) in
the current step are used as the poles in both (7) and (9) in the next
step, then another round of residual identification is performed until
adequate convergence is reached.

IV. DATA-BASED HYBRID MODELING

Using the fitting algorithms for rational modeling as outlined in
the Hybrid Macromodeling Algorithm, we present in this section the
detailed computations required.

A. Delay identification

VF or TDVF identifies a rational representation of H(s) in the
form of (5). This frequency response function can easily be written
in state-space form as given in (2) with A = diag{a1, · · · , an},
bT = (1, · · · , 1) (an all-one vector), and cT = (c1, · · · , cn). The
zeros of this system can be obtained from the poles (eigenvalues) of
the following reversed system

ξ̇ = Âξ + bd−1y (11)

where Â = A − bd−1cT.
With fine tuning, both VF and TDVF algorithms are able to derive

stable rational functions with certain passivity enforcement [11], [12].
In experiments we found that for transmission lines with significant

delay, the rational functions derived from fitting exhibited non-
minimum phase zeros in the right-half plane. By identifying all
non-minimum phase zeros, an all-pass rational function ε(s) is
constructed as stated in section II. Then the delay τ is calculated
from the phase information of ε(s) at the frequency sample points
ωk by a least squares optimization

φk = −ωkτ, (12)

where φk = phase{ε(jωk)}.
Once the delay τ is obtained, the hybrid transfer function ap-

proximation becomes H(s) ≈ H(s)e−τs, where H(s) is a rational
function. It is in the frequency-domain equivalent to

X(s)H(s) = eτsY (s), (13)

or in the time-domain equivalent to

x(t) ∗ h(t) = y(t + τ ). (14)

Then the second round of VF or TDVF fitting re-identifies the rational
part H(s). It is expected that the order of H(s) be lower than that
of H(s) with comparable fitting rms-errors.

B. Passivity enforcement

The work in [11], [12] developed algorithms to enforce passivity
of rational fitting models using either Quadratic Programming(QP)
in residue perturbation or Hamiltonian matrix perturbation. These
treatments only have limited passivity enhancement but with demand-
ing computations; in general the QP method does not guarantee the
passivity over the full frequency range.

Recently, another passivity test was proposed in the control litera-
ture [13], [14]. For the state-space equation stated in (2), the transfer
function of this system is

H(s) = d + cT (sI − A)−1b. (15)

According to this test, H(s) is strictly positive real(SPR), i.e., strictly
passive, if and only if: 1) d > 0; 2) A is stable; and 3) the matrix
(A−(1/d)bcT )A has no eigenvalues on the closed negative real axis
(−∞, 0]. Conditions 1) and 2) are relatively easy to enforce during
a fitting process but for condition 3). Nevertheless, condition 3) can
be used to test whether the rational models produced by fitting (even
with passivity enforcement) are truly passive.
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V. EXPERIMENTAL RESULTS

In this section, two circuits are used to demonstrate the applicabil-
ity of the proposed hybrid macromodeling algorithm in interconnect
analysis. We mainly checked the following questions in our exper-
iment: 1) Whether is the delay extracted comparable to the delay
measured from the waveform [6]? 2) After the delay is extracted,
whether can the order of the rational component further be reduced?
and 3) Whether do the hybrid models finally obtained remain stable
and passive?

Circuit 1 consists of three coupled parallel wires, each wire is
modeled by nine RLC segments with capacitive coupling. Circuit
2 is an H-shape clock-tree with four terminal branches, each wire
segment is modeled by ten RLC stages. The MNA formulations of
the two circuits result in full-order models of order 89 and order 213,
respectively.

TABLE I
RESULTS OF 1ST ROUND FITTING WITH DELAY EXTRACTION.

VF TDVF
order rms- τ order rms- τ

Circuit (iter) error (iter) error
1 18(4) 3.83E-2 7.79E-11 16(4) 3.25E-2 8.76E-11
2 16(5) 2.87E-6 2.30E-10 18(4) 4.15E-2 2.33E-10

The orders listed in Table I are the rational model orders used in the
first round of fitting for the purpose of delay extraction. The iteration
times needed by using VF and TDVF are also listed in the table.
The rms errors measure the fitting accuracy at the end of first round
fitting. The delays (τ ) listed are extracted from the non-minimum
phase zeros. It is worth noting that inductive circuits usually exhibit
appreciable initial delays before the step responses start to rise. For
the circuits under experiment, we used HSPICE to measure the initial
delay at the output during the transient from 0 V to 1/100 V ; the
delays observed for circuits 1 and 2 were respectively 7.32E−11 s
and 2.58E−10 s (very close to what we estimated.) As a comparison,
the delays estimated using the method in [6] for circuit 1 and 2 were
respectively 9.92E−11 s and 3.56E−10 s. Figs. 1, 2, 3, and 4 show the
fitting results produced by VF and TDVF in the frequency-domain
and time-domain, respectively.
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Fig. 1. First round fitting result of Circuit 1 using VF.

0 2 4 6 8 10

x 10
9

10
−1

10
0

10
1

10
2

10
3

Frequency [Hz]

M
ag

ni
tu

de
 [p

.u
.]

Approximation of H(s) in the frequency domain

 

 
data
model

Fig. 2. First round fitting result of Circuit 2 using VF.

In these two examples, we use 800 linearly distributed sampled
points to do the VF and TDVF. In experiment, we found that both
VF and TDVF algorithm are robust enough to converge in few times
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Fig. 3. First round fitting result of Circuit 1 using TDVF.
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Fig. 4. First round fitting result of Circuit 2 using TDVF.

of iteration even using fewer sample points. And in comparison with
the data listed in Table III, both VF and TDVF could use lower
order macromodels than famous non-hybrid model order reduction
technique PVL[2] to model the circuit with comparatively equal or
even lower rms-error. Another advantage of the fitting methods, say
VF and TDVF, is that it does not need to know the structure of
the original circuit and do the time consuming Krylov subspace
projecting process, it only needs a few sampling points of the
behavior of the original circuit.

Shown in Table II are the second round fitting results with
new choices of the rational model order after the delay terms are
removed. We found in experiment that, by keeping the fitting accuracy
comparable to the first round fitting, the TDVF could result in a lower
order rational component in the second round of fitting than the VF
method; the exact reasons are not clear to the authors at the moment.
This phenomenon is also observed by the authors in [4] using the
time domain hybrid phase-pole macromodeling technique. However,
the phase delay τ is also useful not only in the time domain but also
in the frequency domain[5]. Shown in Figs. 5, 6, 7, and 8 are the
rational fitting results of the second round using VF and TDVF.
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Fig. 5. Second round fitting result of Circuit 1 using VF.
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Fig. 6. Second round fitting result of Circuit 2 using VF.
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TABLE II
RESULTS OF 2ND ROUND FITTING.

VF TDVF
Circuit order(iter) rms-error order(iter) rms-error

1 18(4) 3.92E-2 6(4) 6.12E-2
2 14(3) 6E-4 8(4) 8.30E-2

TABLE III
RESULTS OF MODEL ORDER REDUCTION USING PVL.

PVL
Circuit order rms-error

1 41 3.04E-2
2 44 2.00E-2
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Fig. 7. Second round fitting result of Circuit 1 using TDVF.
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Fig. 8. Second round fitting result of Circuit 2 using TDVF.

By the passivity test we presented earlier, the constant term d in
the rational function must be positive. But both fitting methods might
end up with a negative d; in which case a simple correction is just
to flip the sign of d as long as the rms-error does not change too
much, and continue to test the other conditions for passivity. Shown
in Table IV are the passivity test results. The two cases in the table
indicated “No” were caused by the negative d’s. Both circuits passed
the passivity test after flipping the sign of d. The rms-errors of both
circuits after flipping the sign of d became 9.58E−2 and 13.1E−2,
respectively; hence were considered acceptable. In case flipping the
sign of d results in large rms-error or still fails the other passivity
conditions, then it is recommended to change the fitting orders and
test the passivity again.

VI. CONCLUSION

We have investigated a new idea on explicitly extracting delay
from rational fitting in both the frequency-domain and the time-
domain by using the system response data. We have demonstrated that
appreciable delays in inductance-prominent circuits can be identified
from the non-minimum phase zeros resulting from rational fitting.
A two-round rational fitting procedure is proposed for constructing
hybrid interconnect models A quick passivity test in collaborating
with fitting is also introduced. Future work includes incorporating
the passivity test in the process of fitting and extending the current
technique to the hybrid modeling of multiple-input-multiple-output
interconnect systems.

TABLE IV
PASSIVITY TEST OF THE HYBRID MODELS

VF TDVF
Circuit d passivity d passivity

1 1.21E-2 Yes 4.61E-2 Yes
2 5.00E-4 Yes 2.32E-1 Yes

τ -extracted 1 8.03E-3 Yes -5.81E-2 No
τ -extracted 2 2.26E-2 Yes -3.75E-2 No
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