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Abstract— Many topological approaches to symbolic network analysis
have been proposed in the literature, but none are implemented ultimately
as a simulator for large network analysis due to their complexity and
exponentially increasing number of terms. A novel methodology adopted
in this paper uses a graph reduction approach based on a set of
graph reduction rules developed recently. Furthermore, a Binary Decision
Diagram is used in the implementation of a symbolic simulator that is
capable of analyzing large analog circuit blocks. Implementation details
and experimental results are reported.
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I. INTRODUCTION

Symbolic network analysis is a formal technique to calculate the
behavior or the characteristics of a circuit in terms of symbolic
parameters. In contrast to numerical simulators such as SPICE [11],
symbolic simulators can provide insights to the circuit behavior,
showing performance trade-offs and sensitivities to parameter vari-
ation and offering advantages in optimal topology selection, design
space exploration and fault detection [1]. Symbolic network analysis
from topological perspective has been studied extensively in the
literature in the early 1950’s [2], [3], [4] and recently [9]. One can
find a comprehensive review on this approach in the textbook [5].

Despite the intensive research in the past decades on symbolic
network analysis, most results did not come into practical simulators.
The main difficulty arises from the exponential growth of the product
terms with the number of nodes and elements in the circuit. A good
symbolic simulator for exact analysis of large integrated circuit must
have efficient ways to generate and store the product terms.

The simulator implemented in this paper is based on a graph
reduction algorithm developed recently [7], together with an efficient
storage scheme using Binary Decision Diagram (BDD) [6]. With
a good symbol ordering heuristic, the graph reduction process can
be represented by a BDD without exhausting the computer memory
and it is no longer needed to explicitly enumerate the exponential
number of terms. Furthermore, numerical analysis can be carried out
efficiently due to the efficient implementation mechanism based on
the BDD.

The work of this paper and [7] is based on the earlier work of [9]
where a valid tree pair idea was proposed, but without a fully devel-
oped theory and a working implementation. This key contribution of
this paper is on the implementation techniques based on an innovative
graph reduction idea. The graph reduction algorithms are introduced
in Section II. Implementation details on the symbolic simulator are
presented in Section III. Experimental results are reported in Section
IV. Conclusion is made in Section V.

∗This work was supported by the National Natural Science Foundation of
China, Grant No. 60572028.

II. GRAPH REDUCTION ALGORITHMS

A graph reduction algorithm is presented with an example in this
section. The circuits to be analyzed are allowed to contain elements
such as impedances (Z), admittances (Y), four types of dependent
sources (VCVS, CCCS, VCCS, CCVS), and independent source. To
simplify formulation, the following assumptions are introduced:

Basic Assumptions

• A controlling branch only controls one branch.
• A controlled branch is controlled by only one branch.
• There is only one independent source in the circuit under

analysis.

The assumptions are not restrictive; complex circuits can be
remodeled to satisfy the assumptions in one way or another. For a
given circuit satisfying the basic assumptions, it can be converted to a
graph according to the following rules (see Fig. 1 for an illustration.)

Graph Construction Rules

(i) The edges associated with sources are directed, with voltage
edges from + to - and current edges along the current direction
assigned.

(ii) Add an edge for each controlling voltage. Each controlling
current takes a single edge.

(iii) All edges are identified by their edge names.
(iv) The input-output is modeled by an appropriate dependent

source.

Fig. 1. A circuit example.
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Fig. 2. Construction of Graph Reduction Diagram.
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The graph construction rules basically assign a symbol to one
independent edge or a pair of two dependent edges. In our graph
reduction approach, the input-output pair is always modeled as a
virtual dependent source, such as a VCVS (Uo controls Vs ) for
the example in Fig. 1(b), with the corresponding symbol solved
symbolically as the unknown.

We continue to use the example in Fig. 1(a) to illustrate the
construction of a decision diagram based on a graph reduction
process. Because of the presence of dependent sources, splitting the
graph into two subgraphs satisfying certain constraints would greatly
simplify the topological analysis. Fig. 2 shows the splitting of the
graph in Fig. 1(b) into two subgraphs, called L-graph and R-graph.
According to definition of admissible term given in the Appendix,
the Vc edge is only allowed in the R-graph.

The L-graph and R-graph are then reduced edge-by-edge following
the Graph Reduction Algorithm until no further reduction is neces-
sary. We choose an order for the symbols to be manipulated, X < R
< C, where symbol X is associated with the VCVS pair and X < R
means manipulating symbol X before symbol R. Each symbol has
two operations in the graph reduction process, one for adding this
symbol into an admissible term (i.e., include the symbol) and the
other for ignoring it (i.e., exclude the symbol). We begin with the
symbol X which refers to a VCVS pair associated with the input-
output. At the beginning, the initial L-graph and R-graph are intact
(see Fig. 3).

The operations on the edges associated with different types of
symbols are summarized in Table I, which are derived from the
definition of admissible terms (see the Appendix).

TABLE I
BINARY OPERATIONS FOR GRAPH REDUCTION

Include Symbol Exclude Symbol

L-graph R-graph L-graph R-graph
VCVS Short VS Short VC Short VS Short VS

Open VS Open VC
CCVS Short VS Short CC Short VS Short VS

Open CC Open VS Short CC Short CC
VCCS Short CS Short VC Open CS Open VC
CCCS Short CS Short CC Short CC Short CC

Open CS
Y/Z Short Y/Z Short Y/Z Open Y/Z Open Y/Z

Since symbol X is associated with the VCVS pair, there are
two types of operations listed in Table I for the edges Vs and Vc.
Namely, one operation is to shorten the Vs edge and the Vc edge
respectively in the L-graph and in the R-graph simultaneously as an
edge-pair (meanwhile the Vs edge in the R-graph must be removed
for consistency); the other operation is to shorten both Vs edges in the
L-graph and the R-graph while removing the Vc edge from R-graph
(i.e., in this case, the Vs edge is treated as a common edge). These
two operations lead to respectively the left vertex R and the right
vertex R pointed by the two signed edges rooted at the vertex X in
the decision diagram (Fig. 3(a)). The resulting two reduced subgraph
pairs are attached to the newly generated vertices (marked by “R”s)
for further processing.

We continue to process the symbol R and then the symbol C by
shortening and opening the relevant edges until no more symbols are
left. Tracing along any path from the root to the terminal vertex in
the decision diagram, if the number of shortened edges is equal to
N − 1, where N is the total number of nodes in the original graph,

then the terminal vertex is marked “1”; otherwise, marked “0”.
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Fig. 3. Construction of Graph Reduction Decision Diagram.

The following Graph Reduction Algorithm summarizes the details
for the graph reduction decision diagram construction. The Sign
Determination Algorithm is used for the edge sign computation.

Graph Reduction Algorithm
Step 1. Initialization: Create L-graph and R-graph with VC edges

removed from the L-graph and CS edges removed form the
R-graph.

Step 2. Process the edges in the order specified for the symbols,
with I/O being the first symbol. Short or open the edges
according to the operations listed in Table I.

Step 3. Check the Termination Condition. If tree formed, point
the BDD edge to the 1-terminal; If not, point it to the 0-
terminal. Go to Step 6; otherwise, go to Step 4.

Step 4. Determine the signs attached to the BDD edges according
to the Sign Determination Algorithm.

Step 5. Hash the subgraph-pair. If hashed, terminate the graph
reduction along this BDD edge.

Step 6. More symbols unprocessed? If yes, go to Step 2; otherwise,
quit.

Sign Determination Algorithm
Step 1. Initialization: Create two arrays, storing the L-graph and R-

graph in that each edge is identified by its two end node
numbers. Set sign := 1.

Step 2. If the edge is opened, remove the edge from the arrays and
keep the sign unchanged. If the edge (denoted (v1; v2) with
v1 < v2) is shortened, remove the edge from the arrays
and replace the larger node number v2 by the smaller node
number v1 of the shortened edge for all the remaining edges
in the two arrays. Count the number of nodes in the two
arrays that are indexed smaller than v2. If the count is odd,
update the sign by −1.

Step 3. If the edges being shortened are in opposite direction
(denoted (v1; v2) with v2 < v1), update the sign by −1.

Step 4. If the shortened edge is a VS and is not a common edge,
update the sign by −1.

Step 5. Attach the resulting sign to the corresponding GRDD edge.

We note that each rooted path ending at the 1-terminal in the
decision diagram represents an admissible term, which is the product
of all the signed weights of the shortened edges. The graph reduction
process results in a binary decision diagram consisting of symbol
vertices and signed edges (see Fig. 3(b)), which is called a Graph
Reduction Decision Diagram (GRDD). The BDD technique is also
used in [8] but from a determinant-expansion point of view for
symbolic circuit analysis.
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In the graph reduction process, we shorten the edges by collapsing
the larger end node into the smaller one meanwhile relabel the
remaining edge nodes that have been collapsed in the subgraphs.
The node renumbering is needed for the determination of GRDD
edge signs, which is based on a recursive processing of the incidence
matrices of a subgraph pair.

We refer the reader to [7] for a theoretical justification of the
algorithms listed in this section. The correctness of the algorithms is
also justified from implementation reported in the following sections.

III. SYMBOLIC SIMULATOR IMPLEMENTATION

Our symbolic simulator consists of a netlist parser, a symbolic
analysis engine (containing the GRDD) and a numerical analyzer.
The netlist parser reads the standard SPICE netlist and converts it
to a directed graph stored in the computer memory according to the
Graph Construction Rules.

The symbolic analysis engine processes the graph and constructs
a binary decision diagram in the computer memory, in which the
unknown symbol X is at the root vertex. For the circuit in Fig. 1,
the symbols are ordered as X > R > C and the GRDD constructed
is shown in Fig. 3(b) with X being the virtual dependent pair
(VCVS). The symbolic analysis engine generates the three product
terms (rooted paths ending at the vertex 1) satisfying the homogenous
equation (Theorem 1):

− X · R−1 + R−1 + Cs = 0 (1)

where X is the unknown. The transfer function from Vs to Uo is then
T (s) = 1/X , where X is solved symbolically from (1) by sorting
the terms.

In the GRDD, all terms involving the X symbol are stored as the
1-edge sub-diagram and those terms not involving the X symbol are
stored as the 0-edge sub-diagram of the GRDD root. The analyzer
evaluates the product terms stored in the GRDD with all symbols
substituted by their (complex) numerical values (with the Z values
inverted) and divides the value of 1-edge by that of the 0-edge at
the root to get the one-point frequency response. The analyzer also
calculates the statistics of the decision diagram, including the number
of vertices created and the number of terms it represents, etc.

The GRDD construction details have been articulated in the
previous section. Described below are the implementation details that
are critical for GRDD efficiency.

A. Symbol Ordering Heuristic

The symbol processing order strongly affects the size of GRDD.
In the current implementation, the symbols of the circuit elements
are ordered starting from the I/O port, then the elements directly
connected to it, and then the elements connect to the previously
ordered elements until all of the symbols are ordered. This process
of ordering is easily implemented in a breadth first fashion. We
define some priorities for those equivalent elements (elements that
are all connected to the previously ordered ones). The impedances
(admittances) are assigned the higher priority but ordered at random.
This ordering heuristic is from the consideration of early termination,
namely, graph disconnectivity can be detected early. We believe other
better good orderings exist by exploring the circuit topology.

B. GRDD Sharing

As usual, the efficiency of BDD implementation comes from the
sub-diagram sharing. In the same vein, the GRDD sharing is consid-
ered in our implementation as well. The sub-GRDD sharing comes
from the fact that in the graph-pair reduction process, some later

reduced graph-pairs will find themselves identical or topologically
isomorphic to the earlier reduced graph-pairs.

In GRDD construction, we always merge two end nodes of an edge
by retaining the smaller node number. This convention would end
up with certain reduced subgraphs (from different reduction paths)
having the same topology but different node numberings. We call
such reduced subgraphs isomorphic subgraphs (see Fig. 4(a) for an
example). Furthermore, as shown in Fig. 5, although the two subgraph
pairs have different topologies, they lead to two identical sub-GRDDs.
We call such reduced subgraphs term-equivalent subgraphs.

It is easy to observe that both isomorphic and term-equivalent
subgraphs would result in the same set of admissible sub-terms (see
Fig. 4(b) and Fig. 5 for examples), regardless of the node numbering
and even the subgraph topologies.

Subgraph isomorphism and term-equivalence could possibly lead
to sub-GRDD sharing. In our implementation, identical subgraph
pairs are shared first, followed by considering whether the associated
GRDD vertices can be shared. GRDD vertices are shared when
their attached reduced subgraph pairs, symbol indexes and the signs
attached to their incident edges are all identical to each other. The
two sharings are implemented by hash functions. The hash key for
the identical subgraph sharing is determined by the topology of the
subgraph pair, while the hash key for the vertex sharing is determined
by the attached reduced subgraph pair, symbol index and the sign
of the incident edge. Hash tables are used to keep each reduced
subgraph-pair and GRDD vertex unique.

Note that the vertex sharing implemented above did not consider
the possible sharing resulting from isomorphic and term-equivalence.
For better efficiency, this part of vertex sharing is implemented
in the second phase called GRDD reduction explained in the next
subsection.

C. GRDD Reduction

GRDD Reduction takes care of possible vertex sharing resulting
from subgraph isomorphism or term-equivalence. In our implemen-
tation, we used a vertex labeling technique. The label of a GRDD
vertex is determined by the labels of its children vertices. We set the
0-terminal with label 0 and 1-terminal with label 1. GRDD Reduction
keeps the vertex labels unique in GRDD and unreference the redun-
dant ones. GRDD Reduction also reduces any GRDD vertex whose
1-edge and 0-edge both point to the 0-terminal; it simply replaces
such a vertex by the 0-terminal and unreferences it. After reduction,
we do a garbage collection to free those unreferenced vertices. Fig. 4
shows an example for GRDD Reduction on isomorphic sub-diagram.

Reduction and Garbage Collection are standard manipulations in
BDD packages [6].

D. GRDD Evaluation

Numerical frequency response can be obtained easily from the
GRDD constructed by substituting the symbols with their numerical
values at a set of frequency points. The efficiency of this symbolic
simulator is determined by two parts: the GRDD construction and the
numerical evaluation. The efficiency of GRDD construction largely
depends on a good symbol ordering scheme. As long as a GRDD
can constructed in reasonable time, the time for numerical evalua-
tion is negligible due to the efficiency by the hashing mechanism
implemented.

The partial numerical value at an GRDD vertex is evaluated
recursively by the following formula:

eval(vertex) = eval(vertex→left) ∗ V (symbol) ∗ sign1(vertex)

+ eval(vertex→right) ∗ sign0(vertex) (2)
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where vertex is any GRDD vertex, eval(vertex) is the complex
value calculated at vertex vertex, vertex→left points to the child
vertex connected by the 1-edge and vertex→right points to the child
vertex connected by the 0-edge, sign1 and sign0 are respectively
the signs attached to the 1-edge and 0-edge, and V (symbol) is the
numerical value of the symbol at the GRDD vertex (with the Z
value inverted). With hashing techniques, the complexity of recursive
numerical evaluation is linear in the GRDD size.

E. Strategies for Efficiency

1) Lumping parallel branches: The circuit to be analyzed usually
contain parallel elements that appear as parallel edges in the con-
verted graph. Lumping these parallel branches to one branch means
multiple symbols are combined into one symbol, by which the graph
complexity and the number of product terms are reduced remarkably.

2) Early Disconnectivity Detection: Part of the Termination Con-
dition in the GRDD Construction Algorithm is by detecting the graph
disconnectivity as early as possible. We count the number of the edges
in the reduced graph by counting those parallel edges as one edge and
ignoring those self-looped edges. If the number of edges is less than
the number of the vertices of the reduced graph minus one, then the
reduced graph is disconnected and the current GRDD vertex should
be pointed to the 0-terminal.

IV. EXPERIMENTAL RESULTS

Our simulator was implemented in C++ and run on Intel Pentium
1.73GHz processor with 1G memory. Three benchmark circuits used
in our experiment are:

. µa741, a bipolar opamp containing 24 transistors (same circuit
used in [8], Fig. 15.)

. µa725, a bipolar opamp containing 26 transistors (same circuit
used in [10], Fig. 13.)

. MOSopamp, a MOS cascode opamp containing 22 transistors
(same circuit used in [10], Fig. 8.)

The small signal models for the MOSFET and bipolar transistors are
the same as that used in [8], Fig. 14, or in [10], Fig. 4.

Table II shows the simulator performance of the sample circuits.
edge lump is the number of edges after the parallel elements are
lumped. |GRDD| is the size of GRDD. Note that for the µa725
circuit we used a different ordering heuristic than the one described
before. A universally applicable ordering heuristic is still under
investigation.

Table II also shows the effects of GRDD Sharing and GRDD
Reduction. The number of GRDD vertices is much less after GRDD
reduction comparing to that before GRDD reduction. GRDD Sharing
happens frequently during the construction.

Shown in Fig. 6 is a set of frequency responses produced by our
symbolic simulator and HSPICE. The results of our simulator match
exactly those obtained from HSPICE [12]. These results provides part
of justification for the correctness of our symbolic simulator.

The experimental results show that our symbolic simulator is
capable of generating the exact network functions of large analog
circuits, such as µa741 and µa725, in the scale of seconds. (Note that
in [10] the authors use approximate techniques to analyze µa725.)
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TABLE II
SIMULATOR PERFORMANCE FOR BENCHMARK CIRCUITS

Ckt name #Edge #Edge lump #Node #Symb #Term |GRDD| Time Memory
µa741 160 103 24 81 1.39e+14 31887 1.9s 34.78MB
µa725 166 120 31 98 5.09e+17 53420 22.6s 358.7MB

MOSopamp 182 90 14 65 2.93e+09 154452 4.3s 84.52MB

Ckt name #Reduced graph #GRDD vertices #GRDD vertices #GRDD vertices
sharing sharing without reduction with reduction

µa741 209005 35870 85815 31887
µa725 4928831 858184 1753994 53420

MOSopamp 81652 147337 334423 154452

Shi and Tan [8] also reported that their DDD-based symbolic sim-
ulator can analyze the µa741 circuit exactly. The DDD package uses
determinant-based formulation, lacking the topological information
during symbolic analysis, whereas our simulator directly manipulates
on the circuit topology, thus can potentially provide the designer more
intuition on the circuit under design. With good symbol ordering,
both simulators are able to construct decision diagrams in less than
a minute.

V. CONCLUSION

This paper has described some implementation details on an
efficient symbolic simulator based on a graph reduction approach.
The graph reduction process is designed in such a way that using
a BDD can avoid processing the exponential number of symbolic
product terms explicitly, meanwhile numerical evaluation also can
be carried out efficiently due to the sharing mechanism offered by
BDD. This simulator is the first one ever capable of analyzing large
analog circuits directly from the circuit topology. Finally, we point
out that this symbolic simulator can be extended easily to deal with
ideal opamps modeled by nullators and norators.

APPENDIX

A. Basic Concepts and Main Theorem

This appendix provides an outline of the theoretical foundation of
this work. The proof of the main theorem is available in [7].

Definition 1 (Admissible Tree-Pair) An admissible tree-pair con-
sists of an L-tree and an R-tree with the following conditions satisfied:

(i) All Y and Z edges appearing in an admissible tree-pair are
common edges.

(ii) All CC and VS edges in the original network must appear in
the admissible tree-pair, but are allowed to appear either as
common edges or as pairing edges, exclusively. If appearing
in pair, CC edges must be in the R-tree while VS edges must
be in the L-tree.

(iii) Any VC and CS edges may or may not appear in the admissible
trees. However, whenever they appear, they must appear as
pairing edges with the VC-edge in the R-tree and the CS-edge
in the L-tree.

When all edges are identical in the two trees of an admissible tree-
pair, the admissible tree-pair reduces to an admissible tree. Hence,
admissible tree is a special case of admissible tree-pair.

Definition 2 (Admissible Term) The signed product of all edge
weights from an admissible tree-pair or an admissible tree is called
an admissible term. The edge weights are defined as follows:

(i) Common edges: The weight for a Y edge is the element symbol
Y . The weight for a Z edge is the reciprocal of the element
symbol, Z−1, and the weights for all common CC and VS edges
are one.

(ii) Pairing edges: The weights for four dependent sources are
signed multipliers defined as: −E for VCVS, +F for CCCS,
+G for VCCS, and −H for CCVS.

(iii) Term sign: The term sign for an admissible tree is always
positive. The term sign for an admissible tree-pair is determined
by the Sign Determination Algorithm.

Theorem 1 (Main Theorem) Under the Basic Assumptions, all ad-
missible terms defined by Definition 2 sum up to zero and are
cancellation-free.
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