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ABSTRACT
In this paper, we proposed an efficient statistical chip-level
total power estimation method considering process varia-
tions with spatial correlation. Instead of computing dynam-
ic power and leakage power separately, the new method com-
pute the total power via circuit level simulation under realis-
tic input testing vectors. To consider the process variations
with spatial correlation, we first apply principle factor anal-
ysis method (PFA) to transform the correlated variables into
uncorrelated ones and meanwhile reduce the number of re-
sulting random variables. Afterwards, Hermite polynomials
and sparse grid techniques are used to estimate total power
distribution in a sampling way. The proposed method has
no restrictions on models of statistical distributions for total
powers. The proposed method works well when strong spa-
tial correlation exists among random variables in the chip.
Experimental results show that the proposed method has
78X times speedup than the Monte Carlo method under
fixed input vector and 26X times speedup than the Monte
Carlo method considering both random input vectors and
process variations with spatial correlation.

1. INTRODUCTION
For digital CMOS circuits, the total power consumption

is given by the following formula:

Ptotal = Pdyn + Pshort + Pleakage, (1)

in which Pdyn, Pshort and Pleakage represents dynamic pow-
er, short-circuit power and leakage power, respectively. Most
of the previous works on power estimation either focus on
dynamic power estimation [2, 5–7, 10, 13] or leakage power
estimation [3, 12,18, 22].
As technology scales down to nanometer ranges, the pro-

cess induced variability has huge impacts on the circuit per-
formance [14]. Further more, many variational parameters
in the practical chips in nanometer range are spatially corre-
lated, which makes the computations even more difficult [21]
and simple assumption of independence for involved random
variables can lead to significant errors.
Early research on power analysis is mainly focusing on dy-

namic power analysis [2, 4–6, 13], the solution ranges from
the transition density based method [13], tagged probabilis-
tic method [4] to the practical Monte Carlo based method [2,
5, 6]. Later on, designers realize that leakage power is be-
coming more and more significant and is very sensitive to the
process variations. As a result, full chip leakage power esti-
mation considering process variations under spatial correla-
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tion have been intensively studied in the past [3, 12, 18, 22],
the method can be grid based [3, 18], projection based [12],
simplified gate leakage model based [22].

Although total power can be computed by simply adding
the dynamic power and leakage power (plus short-circuit
power), practically, dynamic power and leakage power are
correlated. For instance, leakage power of a gate depend-
s on its input state, which depends on the primary inputs
and timing of the circuits. Using dominant state or average
values is less accurate than the precise circuit-level simula-
tion under realistic testing input vectors. Under the process
variations with spatial correlation, the dynamic power and
leakage power are more correlated via process parameters.
As a result, traditional separate approaches will not be ac-
curate. Circuit level total power estimation based on real
testing vectors is more desirable.

Fig. 1 shows the comparison of the circuit total power dis-
tribution of c432 from ISCAS’85 benchmark. We show two
power variations. The first figure (upper) is obtained due
to random input vectors. The second is obtained using a
fixed input vector but under process variations with spatial
correlation. As can be seen that, the variance induced by
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Figure 1: The comparison of circuit total power dis-
tribution of circuit c432 in ISCAS’85 benchmark set-
s (top) under random input vectors (with 0.5 input
signal and transition probabilities) and (bottom) un-
der a fixed input vector with effective channel length
spatial correlations.

process variations is comparable with the variance induced
by random input vectors. As a result, consider process vari-
ation impacts on the total chip power is important for early
design solution exploration and post-layout design sign-off
validation.
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Several works had been proposed to consider the dynam-
ic power consider process variation. Harish et al. [10] used
hybrid power model based on Monte Carlo analysis, but the
method is only applied to a small two-stage 2-input NAND
gate. The work in [1] used a variation delay model to obtain
minimum and maximum delay bound in order to estimate
the number of glitches and dynamic power. The work in [7]
introduced a new method based on transition waveform con-
cept, where transition waveform is propagated through the
circuit and the effect of partial swing could be considered.
However, none of these works consider the process induced
variations with spatial correlation which can be significant
(as shown in Fig. 1).
In this paper, we propose an efficient statistical chip-level

total power estimation (STEP) method considering process
variations under spatial correlation in which both the dy-
namic power and leakage power are included. To the best
knowledge of the authors, it is first work toward the statisti-
cal total power analysis. The new method use the commer-
cial Fast-SPICE tool (UltraSim) to obtain total chip pow-
er. To consider the process variations with spatial corre-
lation, we first apply principle factor analysis method (P-
FA) to transform the correlated variables into uncorrelated
ones and meanwhile reduce the number of resulting random
variables. Afterwards, Hermite polynomials and sparse grid
techniques are used to estimating total power distribution
in a sampling way. Experimental results show that the pro-
posed method is 78X times faster than the Monte Carlo
method under fixed input vector and 26X times faster than
the Monte Carlo method considering both random input
vectors and process variations with spatial correlation.
The rest of the paper is organized as follows: In Section 2

we review the Monte Carlo based power estimation method.
Section 3 describes the proposed method of total power es-
timation under process variations with spatial correlation.
The experimental results are presented in Section 4 to vali-
date our method. Finally, Section 5 concludes this paper.

2. REVIEW ON THE MONTE CARLO-BASED
POWER ESTIMATION METHOD

In general dynamic power Pdyn is expressed as follows,

Pdyn =
1

2
fclkV

2
dd

n∑
i=1

CiSi (2)

where n is the number of gates on a chip, fclk is clock fre-
quency, Vdd is the supply voltage, Ci is the sum of load
capacitance and equivalent short-circuit capacitance at n-
ode i, and Si is the switching activity for gate i. Many
previous works about dynamic power estimation are based
on (2), they can be Monte Carlo based [2,5,6] or probabilistic
based [4, 13]. The Monte Carlo based method is considered
more accurate than probabilistic based method and at the
same time without losing much efficiency [2]. In the Monte
Carlo based method, the switching activity Si in (2) can be
modeled as

Si =
ni (T )

T
(3)

in which ni(T ) is the number of transitions of node i in the
time interval (−T/2, T/2]. The mean power PT is defined
as:

PT = E [Pdyn] (4)

The key part in Monte Carlo simulation is the stopping
criterion. Suppose we need to perform N different simula-
tions of the circuit, each of length T and the average and
standard deviation of the N different Pdyn values are mdyn

and sdyn, respectively. Therefore, we have

lim
N→∞

P

⎧⎨
⎩

PT −mdyn

sdyn
/√

N
≤ Pdyn

⎫⎬
⎭ = Φ(Pdyn) (5)

in which P is the probability and Φ(Pdyn) is the cumulative
distribution function (CDF) of the standard normal distri-
bution. Therefore, given the confidence level (1 − α), it
follows that

P

{
−Φ1−α/2 <

PT −mdyn

sdyn/
√
N

≤ Φ1−α/2

}
= 1− α (6)

Given a specified error tolerance ε, (6) can be recast to:

|PT −mdyn|
mdyn

≤ Φ1−α/2sdyn

mdyn

√
N

≤ ε (7)

(7) can be viewed as the stopping criterion when N , mdyn

and sdyn satisfies it.
Afterwards, the work in [5,6] further improve the efficien-

cy of Monte Carlo based method. In [6], the author trans-
form the power estimation problem to a survey sampling
problem and applied stratified random sampling to improve
the efficiency of Monte Carlo sampling. In [5], the author
proposed two new sampling techniques, module-based and
cluster-based, which can adapt stratification to further im-
prove the efficiency of the Monte Carlo based techniques.
However, all of these works are based on gate level logic
simulation as they only consider dynamic powers. For total
power estimation and estimating of impacts of process vari-
ations, one needs transistor level simulations. As a result,
improving the efficiency of Monte-Carlo method becomes
crucial and will be addressed in this paper.

3. THE STATISTICAL TOTAL POWER ES-
TIMATION METHOD

In this section, we present the statistical chip-level total
estimation of power, called STEP. The method can consid-
er both fixed input vectors and random input vectors for
power estimation. Power distribution considering process
variations under fixed input vectors is important, because it
can reveal the power distribution for the maximum power,
the minimum power or the power due to user specified input
vectors. This technique can be further applied to estimate
the distribution for maximum power dissipation [20]. Power
distribution under random input vectors is also important,
as it can show the total power distribution caused by random
input vectors and process variations with spatial correlation.
We first present the overall flow of the proposed method un-
der a fixed input vector in Fig. 2, and then highlight the
major computing steps later. The flow of the method con-
sidering random input vectors is followed afterwards.

3.1 Flow of the proposed analysis method un-
der fixed input vector

The STEP method uses commercial Fast-SPICE tool for
accurate total power simulation. It transforms the corre-
lated variables into uncorrelated ones and reduce the num-
ber of random variables using the principle factor analysis
(PFA) method [9]. Then it computes the statistical total
power based on Hermite polynomials and sparse grid tech-
niques [8].

3.2 Variational models for process parameters
Following existing approaches, we assume that the pro-

cess variations of Leff and Tox follow multivariate normal
distributions [19]. Since Tox is in vertical layout feature di-
mension, and is caused by chemical mechanical polishing
processes, it only depends on local layout density and has



Algorithm: statistical chip-level total estima-

tion of power (STEP) algorithm under a fixed

input vector.

Input: standard cell lib, netlist, input vector, placement
information of design, standard deviation of Leff .
Output: analytical expression of the statistical chip-
level total power in terms of Hermite polynomials.

1. Generate the correlation matrix Ωn,n of all gates
Leff from placement information.

2. Perform variable reduction correlation matrix for
Ωn,n based on principle factor analysis (PFA).

3. Generate the n-dimensional Smolyak quadrature
point sets of second order and corresponding weight
set for the reduced variables.

4. Run Fast-SPICE tool to get the total power for
each Smolyak quadrature sample under fixed input
vector.

5. Compute the coefficients of Hermite polynomial of
the full-chip total power.

6. Calculate the analytical expression of the full-chip
total power and calculate mean value, standard de-
viation, PDF and CDF of the total power if re-
quired.

Figure 2: The flow of proposed algorithm under a
fixed input vector.

no spatial correlation [16]. For simplicity, we only focus on
the spatial correlation of Leff in this paper and we set the
Leff of all gates as random variables. In general, the num-
ber of process parameters that exhibit spatial correlation
can be more than one, and it is understood that this is not
a limitation of our approach.
The spatial correlation used in this paper is given by the

following empirical exponential model [21].

ρ(d) = e−d2/η2

, (8)

where d is the distance between two gates and η is called the
correlation length. Large η means the spatial correlation is
strong, vice versa. The spatial correlation can be captured
by the spatial covariance matrix Ωn,n, where n is the num-
ber of gates on chip. The elements in Ωn,n are modeled
using (8), which are only related to d. Dealing with spa-
tial correlation leads to quadratic computations as all the
correlated variables are enumerated pairwise for accurate
variance estimation.
As the number of correlated random variables can be great

for large designs, to mitigate this problem, we use the prin-
cipal factor analysis (PFA) [9, 11] method in our paper.

3.3 Variable decoupling and reduction
As the number of random variables of each gate’s Leff can

easily exceeds several thousand for large circuits, this can
greatly limit the size of the circuit that can be analyzed.
In statistics theory, principle factor analysis (PFA) [9, 11]
based on the correlation matrix Ωn,n can be performed to
determine the dominant variation sources. Specifically, for

a set of zero-mean Gaussian distributed variables �δ whose
covariance matrix is Ωn,n, if there is a matrix L satisfying

Ωn,n = LLT , then �δ can be represented by a set of indepen-

dent standard normal distributed variables �γl as �δ = L�γl.
Note that the solution for decoupling is not unique. For

example, Cholesky decomposition can be used to seek L s-
ince the covariance matrix Ωn,n is always a semi-positive
definite matrix. However Cholesky decomposition cannot

reduce the number of variables. Instead, we use eigen de-
composition on the covariance matrix which yields:

Ωn,n = LLT , L = (
√
λ1e1, . . . ,

√
λnen), (9)

where λi are eigenvalues in order of descending magnitude,
and ei are corresponding eigenvectors. PFA reduces the

number of components in �δ by truncating L using the first
k items

L = (
√
λ1e1, . . . ,

√
λkek),

then this leads to the approximation

Ωn,n ≈ λ1e1e
T
1 + λ2e2e

T
2 + · · ·+ λkeke

T
k = LLT . (10)

In our paper, the elements in vector �δ = [δ1, δ2, . . . , δn] are
all the gates’ normalized Leff , k is the reduced number of
variables. PFA is efficient, especially when the correlation
length is large. The error of PFA can be controlled by k:
bigger k leads to a more accurate result. In our experiment,
we set the error of PFA to be 1%. Typically, with strong
correlation, the reduction effect can be remarkable.

3.4 Computing total power by orthogonal poly-
nomials

In stead of using the Monte-Carlo method, a better ap-
proach is to use orthogonal polynomial based method, which
will lead to much less sampling than standard Monte-Carlo
method for small number of variables.

Specially, a random variable x(�ξ) with limited variance
can be approximated by truncated Hermite polynomial chaos
expansion as follows [8]:

x(�ξ) =
∑Q

q=0
aqHq(�ξ), (11)

where �ξ = [ξ1, ξ2, ..., ξk]. ξi ∼ N(0, 1), and are orthogonal

to each other. Hq(�ξ) is Hermite polynomial and aq is the
deterministic coefficient. For example, 2nd order Hermite
polynomial set includes

1, ξi, ξ2i − 1, ξiξj , (i �= j). (12)

aq can be determined by

aq =< x(�ξ), Hq(�ξ) > / < H2
q (�ξ) >≈

∑
x(�γl)Hq(�γl)wl,

(13)
which is a multi-dimensional integration and can be ob-
tained by efficient Smolyak numerical quadrature method.
Where �γl and wl are Smolyak quadrature abscissas (quadra-
ture points) and weights, respectively [15].

In our problem, x(�ξ) will be the total power for the full
chip. k is the number of reduced variables by performing the
PFA method. The full-chip total power can be presented by
Hermite polynomial expansion as

Ptot(�ξ) =
∑Q

q=0
Ptot,qHq(�ξ), (14)

Ptot,q is then computed by the numerical Smolyak quadra-
ture method. In this paper, we use 2nd order Hermite poly-
nomials for statistical total power analysis and the Smolyak
quadrature samples for k random variables is 2k2 + 3k + 1.
The coefficient for qth Hermite polynomial, Ptot,q, can be
computed as the following:

Ptot,q =
∑

Ptot(�γl)Hq(�γl)wl/ < H2
q (�ξ) >, (15)

where �γl is Smolyak quadrature sample. As stated in Sec-
tion 3.3, certain quadrature sample can be converted to the
sample in terms of the original gate effective channel length

variables via �δ = L�γl. Thus Ptot(�γl) can be obtained by
running the circuit simulation tools like Fast-SPICE using

the specified Leff obtained from �δ for each gate.



After the coefficients of the analytic expression of the total
power (14) is obtained, we can then get the mean value,
variance, PDF and CDF of full-chip total power very easily.
For instance, the mean value and variance for the full-chip
total power are

μtot = Ptot,0th, (16)

σ2
tot =

∑
P 2
tot,1st + 2

∑
P 2
tot,2nd,type1

+
∑

P 2
tot,2nd,type2, (17)

where Ptot,1st, Ptot,2nd,type1 and Ptot,2nd,type2 are the power
coefficients for the second order Hermite polynomial set ξi,
ξ2i − 1 and ξiξj defined in (12).

3.5 Flow of the proposed analysis method un-
der random input vectors

To consider more input vectors or random input vectors
used in the traditional dynamic power analysis, one sim-
ple way is to treat the input vector as one more variation-
al parameter in our statistical analysis framework. This s-
trategy can be easily fit into the simple Monte-Carlo based
method [2] as we just add one dimension to the variable
space. But for orthogonal polynomial based method, it is
difficult to add this variable into existing space.
In probability theory, the PDF of a function of several ran-

dom variables can be calculated from the conditional PDF
for single random variable. Let Ptotal = g(Uin, Leff ), in
which Uin is the variable of random input vectors, Leff is
the variable of gate effective channel length. The PDF of
total power Ptotal can be calculated by:

fPtotal(p) =

∫ ∞

−∞
fLeff (l|u)fUin(u)du (18)

in which the PDF function under random input vectors
fUin(u) is obtained by Monte Carlo based method [2] and
the conditional PDF fLeff (l|Uin = u) under fixed input
u can be obtained or interpolated from samples calculated
from fixed-input algorithm in Fig. 2. Note u can be viewed
as the power of chip under input u.
We use the example in Fig. 3 to illustrate the proposed

method. In this figure, we first compute the power distri-
bution (solid line) with random input vectors only. Then
we select three input power points, a, b, c (with three corre-
sponding input vectors). In each of the input power point,
we perform statistical power analysis with process variations
under the fixed power input (using the corresponding input
vector). After this, we interpolate the power distributions
for other power points for final integration.
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Figure 3: The selected power point a, b and c from
the power distribution under random input vectors.

The flow of the proposed analysis method under random
input vectors is shown in Fig. 4. The STEP algorithm com-
putes the total power under random input vectors using the
Monte Carlo based method [2].

4. EXPERIMENTAL RESULTS

Algorithm: statistical chip-level total power es-

timation (STEP) algorithm under random input

vectors.

Input: standard cell lib, netlist, random input vectors,
placement information of design, standard deviation of
Leff .
Output: total full-chip power distribution (PDF and
CDF).

1. Compute the random input power distribution
for the netlist using Fast-SPICE tool under ran-
dom input vectors using the Monte Carlo based
method [2].

2. Select several power points (eg. 3 or 5) from the
random input power distribution such that they
cover the power distributions evenly.

3. For each input vector selected in Step 2, perform
statistical total power estimation (shown in Fig. 2)
under the input vector.

4. Interpolate the mean and std for other power points
(with distinguished values) in the power distribu-
tion (caused by random inputs only) from the sam-
ples obtained in Step 3.

5. Calculate the total power distribution under ran-
dom input vectors (PDF and CDF) using the inte-
gration in (18).

Figure 4: The flow of proposed algorithm with ran-
dom input vectors and process variations.

We implemented the proposed method in Matlab V7.8
and used Cadence Ultrasim 7.0 for Fast-SPICE simulation-
s. All the experimental results are carried out in a Linux
system with quad Intel Xeon CPUs with 3GHz and 16GB
memory.

The STEP method was tested on circuits in the ISCAS’85
benchmark set. The circuits were synthesized with Nangate
Open Cell Library under 45nm technology and the place-
ment is obtained from UCLA/Umich Capo [17]. The test
cases are given in Table 1 (all length units in μm).

Table 1: Summary of benchmark circuits.
Circuit Gate # Input # Output # Area

c432 242 36 7 55×48
c880 383 60 16 85×84
c1355 562 41 32 84×78
c1908 972 33 25 102×102
c3540 1705 50 22 141×144

Effective channel length Leff is modeled as sum of spatial
correlated sources of variations based on (8). The nominal
value of Leff is 50nm and the 3σ range is set as 20%. The
same framework can be easily extended to include other pa-
rameters of variations.

Firstly, we use the Monte Carlo based method [2] to obtain
the mean and standard deviation (std) of each circuit sample
under random input vectors. The input signal and transition
probabilities are 0.5, with the clock cycle of 180ps. The
simulation time for each sample circuit is 10 clock cycles
and the error tolerance ε is 0.01.

Secondly, we observe the total power distribution for each
sample circuit under fixed input vector. For each sample
circuit, one input vector is selected, then we run the Monte
Carlo Simulations (10,000 runs) under process variation-
s with spatial correlation as well as our proposed STEP
method. The results are shown in Table 2, in which MC
Co and STEP means the Monte Carlo method considering
process variations with spatial correlation and our proposed



method respectively. The average errors for mean and stan-
dard deviation of the STEP method are 2.90% and 6.00%,
respectively. Fig. 5 shows the total power distribution (PDF

Table 2: Total power distribution under fixed input
vector

Circuit Mean (uW) Err Std (uW) Err
MC Co STEP (%) MC Co STEP (%)

c432 267.6 261.7 2.23 10.22 9.54 6.78
c880 606.9 610.5 0.59 19.88 18.09 9.02

c1355 785.6 799.4 1.76 40.51 43.25 6.77
c1908 1404.9 1294.4 7.86 76.15 79.73 4.71
c3540 2824.6 2766.8 2.05 268.5 261.2 2.73

and CDF) of circuit c880 under a fixed input. Table 3 gives
parameter values of the correlation length η, reduced num-
ber of variable k and sample count of Fast-SPICE running of
the two methods. Sampling time dominates the total simu-
lation time for both MC Co and the STEP method and the
STEP method has 78X speedup over MC Co method on
average. The more speedup can be gained for larger cases.
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Figure 5: The comparison of total power distri-
bution PDF and CDF between STEP method and
Monte Carlo method for circuit c880 under a fixed
input vector.

Table 3: Sampling number comparison under fixed
input vector

Circuit δ k Sample Count Speedup
MC Co STEP Over

c432 50 6 10000 91 110
c880 50 9 10000 190 53
c1355 50 9 10000 190 53
c1908 100 6 10000 91 110
c3540 100 8 10000 153 65

Thirdly, we compare the STEP method with the Monte
Carlo method under both random input vectors and pro-
cess variations with spatial correlation. We select 3 pow-
er points from the total power distribution obtained by the
Monte Carlo based method [2] and get the corresponding in-
put vectors. We performed the STEP method under these
3 input vectors and obtain the corresponding mean and s-
tandard deviation, respectively. The (mean, std) samples
for other power points with distinguished power values can
be interpolated via the 3 samples.
(18) is used to calculate the PDF of total power distribu-

tion under both random input vectors and process variations

with spatial correlation. The results are shown in Table 4,
where MC Co, MC nCo and STEP represent the Monte
Carlo method considering process variations with spatial
correlation; the Monte Carlo method without considering
process variations with spatial correlation and our proposed
method, respectively. The average error of the mean and the
standard deviation of our method compared with MC Co is
2.17% and 6.09% respectively. While the average error of
the mean and the standard deviation of MC nCo compared
with MC Co is 1.34% and 28.01%, respectively. The error
(std) is increasing for larger test cases.

Obviously we can see that the Monte Carlo method con-
sidering only random input vectors fails to capture the true
distribution when both input vector and process variation-
s are considered. The parameter values of δ and k is the
same as in Table 3. The difference is that we need to run
STEP for 3 times and the total sample numbers is increased
correspondingly. However, the STEP method still has 26X
speedup over the Monte Carlo method on average and re-
mains to be accurate. Fig. 6 shows the power distribution
comparison (PDF and CDF) of the STEP method and the
Monte Carlo method under both random input vectors and
process variations with spatial correlation for circuit c880.
We observe that the distribution of the total power under
a fixed input vector or under random input vectors has a
distribution similar to normal as shown in Fig. 5 and 6,
such distribution justify the use of Hermite-based orthogo-
nal polynomials to represent the total power distributions.
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Figure 6: The comparison of total power distribu-
tion pdf and cdf between STEP method and Monte
Carlo method for circuit c880 under random input
vector.

5. CONCLUSIONS
In this paper, we have proposed an efficient statistical to-

tal chip power estimation method considering process vari-
ations with spatial correlation. The new method is based
on accurate circuit level simulation under realistic testing
input vectors to obtain accurate total chip powers. To im-
prove the estimation efficiency, efficient sampling based ap-
proach has been applied using the orthogonal polynomial
based representation and random variable transformation
and reduction techniques. Experiment results show that the
proposed method is 78X times faster than the Monte Carlo
method under fixed input vector and 26X times faster than
the Monte Carlo method considering both random input
vectors and process variations with spatial correlation.
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