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Abstract—The small-signal analysis of an oscillator relative to a
periodic steady-state (PSS) would generate periodic time-varying
characteristic poles. Analyzing periodic root-loci can provide
useful design information, which is not available from the existing
circuit simulation tools. Although the numerical QZ algorithm
can be used to generate periodic root-loci, this paper proposes
an alternative symbolic computation method for repeated pole
computation. It is demonstrated that the Muller algorithm can
be used for finding the dominant periodic roots of a characteristic
polynomial with periodic coefficients, whose efficiency is superior
to the matrix-based numerical QZ method. Other advantages of
symbolic root-locus analysis also are explored by applying the
proposed method to the analysis of two oscillator circuits.

Index Terms—Muller’s Method, oscillator, periodic poles, sym-
bolic method, time-varying root-locus (TVRL).

I. INTRODUCTION

Oscillator is widely used in communication and data con-
verter circuits. Its design relies on extensive use of simulation
tools. The currently available commercial simulation tools
provide very limited support for oscillator design exploration.
Hence, developing new computer-aided design methods for
oscillators is of practical importance.

An oscillator circuit can be described mathematically by the
following nonlinear equation [1]

d

dt
q(v(t)) + i(v(t)) + u(t) = 0, v(0) = v0, (1)

where q, v, i, and u are n-dimensional vector functions with
u(t) denoting the excitation input, and v0 the initial condition
of the circuit. A self-oscillatory circuit has no driving input,
i.e., u(t) = 0. Such a circuit would oscillate by a proper
selection of an initial condition. For small-signal analysis, it is
assumed that the vector functions q(v) and i(v) are differen-
tiable with respect to v. Assume that the oscillator model (1)
has a periodic steady-state (PSS) solution vss(t) = vss(t+T )
with a period T . Then vss(t) satisfies

d

dt
q(vss(t)) + i(vss(t)) = 0. (2)

Assume that the steady-state trajectory is subject to small
perturbation described by v(t) = vss(t)+δv(t). Then we have

d

dt
q(vss(t) + δv(t)) + i(vss(t) + δv(t)) = 0. (3)
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Taking the first order Taylor expansions of q(v) and i(v) and
using the steady-state equation (2), we obtain that

d

dt
[C(t)δv(t)] +G(t)δv(t) = 0, (4)

where

C(t) :=
∂q(v(t))

∂v

∣∣
∣
∣
v(t)=vss(t)

, (5a)

G(t) :=
∂i(v(t))

∂v

∣
∣
∣
∣
v(t)=vss(t)

. (5b)

Ignoring the term
[
d
dtC(t)

]
v(t), we get the following equation

on the perturbation trajectory δv(t),

C(t)
d

dt
δv(t) +G(t)δv(t) = 0, δv(0) = δv0, (6)

where δv0 is the initial perturbation. This is a linear
time-varying differential equation describing the time-domain
small-signal oscillator behavior. Since the coefficient matrices
C(t) and G(t) in equation (6) are periodic functions, one
would obtain a time-varying transfer function in the frequency-
domain after taking a time-varying Laplace transform (see
Zadeh [2]), which results in the following algebraic matrix
equation

[sC(t) +G(t)]δV (s) = C(t)δv0, (7)

where δV (s) is the Laplace transform of δv(t). The poles of
the small-signal model in the frequency-domain are the roots
of s satisfying

D(s, t) := det |sC(t) +G(t)| = 0, (8)

where D(s, t) denotes the time-varying characteristic polyno-
mial of the oscillator. Since both C(t) and G(t) are periodic
time-varying matrices, so are the roots of s. If we find the
periodic roots by sampling the periodic steady-state orbit and
plot the root-loci, we shall get periodic time-varying root-loci
(TVRL) in the complex plane.

Shown in Fig. 1 is the Colpitts oscillator and its three root-
loci, two of which are the pair of dominant (conjugate) roots
that cross the jω axis and one is the real root that moves along
the negative real axis. The root-loci crossing the jω axis are
of physical implications which can be utilized to guide the
oscillator optimization [3].

Finding the roots satisfying (8) can be treated in several
ways. It can be solved as a generalized eigenvalue problem [4].
Typical numerical methods are the Modified-Decomposition
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Fig. 1. (a) Colpitts oscillator. (b) Three root-loci.

(MD) method or the QZ method. The QZ method was used
by Broussev and Tchamov [3] to find the periodic root-loci
of an oscillator. The root-finding problem also can be solved
by constructing a symbolic polynomial D(s, t) and then solve
the dominant roots. This is the subject studied in this paper.

The symbolic TVRL computation method is introduced in
section II. Experimental results are given in section III. Section
IV concludes the paper.

II. SYMBOLIC TVRL ANALYSIS

The procedure of time-varying root-locus analysis is analo-
gous to dc small-signal analysis, with the difference in whether
the small-signal parameters are constant or time-varying.

A. Principle of symbolic analysis

Among many symbolic circuit analysis methods developed
in the literature, we prefer to use a symbolic method based on
binary decision diagram (BDD) [5]. A BDD-based symbolic
method can construct exact symbolic expressions very fast
for large analog circuits containing dozens of transistors. A
symbolic BDD representation is also a computational data
structure, on which one can implement a variety of algebraic
operations. For example, it can be used to generate an s-
expanded symbolic polynomial [6].

In this work, the time-varying polynomial coefficients are
constructed by using a symbolic BDD. So far two BDD-based
algorithms have been developed in the literature. The one by
a graph reduction procedure can build a BDD whose vertices
are directly the circuit small-signal parameters [7]. This form
of symbolic BDD is much easier to use for optimizing circuit
parameters [8].

For TVRL analysis, we are interested in the construction
of a characteristic equation (8) for an oscillator, which is
independent of the specification of input and output. By the
graph-reduction procedure described in [7], a BDD as shown
in Fig. 2(a) is constructed, which represents the characteristic
polynomial

D(s) = (C1s)R
−1 + (C1s)(C2s) +R−1(C2s). (9)

(a) (b)

Fig. 2. (a) A symbolic characteristic function in BDD. (b) The s-expanded
multiple-root BDD, where D[2] and D[1] are respectively the coefficients of
s2 and s1. The unterminated dotted arrows point to the terminal zero.

The reader is referred to [7] for the details on how a BDD
as given in Fig. 2(a) represents the symbolic terms. This
polynomial can be rearranged in s-expanded form by direct
manipulation on the BDD [6], resulting in a multi-root BDD
shown in Fig. 2(b), each root representing one coefficient of
sk. The multi-root BDD are to be used for evaluating the time-
varying coefficients of a characteristic polynomial.

B. Small-signal Model for TVRL Analysis

The commercial simulators like Synopsys HspiceRF [9]
and Cadence SpectreRF [10] can be used for solving a
numerical periodic steady-state (PSS) trajectory of an oscil-
lator. Mayaram et al. in [11] presented an overview on the
popular simulation algorithms and tools for radio-frequency
(RF) circuits.

An appropriate small-signal model must be chosen for
periodic small-signal analysis. This work uses the quasi-
static small-signal MOSFET model shown in Fig. 3, which
is compatible to the model used in the SpectreRF simulator.

Fig. 3. Quasi-static small-signal MOSFET Model [12].

Six voltage-controlled capacitors are included in the small-
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signal model; they are treated in the symbolic tool as voltage-
controlled current sources (VCCS) with transadmittances Cks.

C. Polynomial root-finding

A traditional circuit simulator performs pole-zero analysis
based on the modified nodal analysis (MNA) of a small-
signal equivalent circuit, while a symbolic method in general
performs pole-zero analysis by constructing polynomials. The
Muller algorithm [13], [14] is a commonly used effective
polynomial root-finding method. It is an iterative procedure
in which three complex points are repeatedly updated until a
single real root or a pair of conjugate roots are converged
to. After polynomial deflation, the same search procedure
is repeated. In implementation, circuit element scaling or
frequency scaling can be applied for better convergence.

Three initial complex points must be specified to start the
Muller algorithm. In TVRL analysis, a sequence of charac-
teristic polynomials, denoted by D(s, tk) = 0, are generated,
where tk is one time instant at which the periodic steady-
state orbit is sampled. Since a sequence of points are sampled
one after another along a periodic trajectory, the roots of the
successively generated polynomials exhibit proximity in the
complex plain. That is, the roots of D(s, tk) = 0 would
locate closely to the roots of D(s, tk+1) = 0 if tk and tk+1

are two successive sampling instants. In this sense, the last
three points converged in the previous search for roots of
D(s, tk) = 0 can be used as the starting three points for the
next Muller search of the roots of polynomial D(s, tk+1) = 0.
This strategy is called the “successive Muller iteration” for
periodic polynomials, which is used for solving the dominant
periodic root-loci. It helps accelerate the convergence of the
Muller iteration.

In this work we only consider the dominant (conjugate)
roots for TVRL analysis as proposed in [3]. Hence, the
polynomial deflation and finding the roots of reduced order
polynomials are not needed. Other non-dominant roots can be
computed as well in principle, but their implications are not
clear yet for the moment.

III. EXPERIMENTAL RESULTS

The proposed symbolic TVRL analysis procedure was im-
plemented in C++ and tested on a personal computer with
an Intel Core2 2.26GHz processor and 256MB memory. The
two oscillator circuits used in [3], shown in Fig. 4(a) and
(b), were borrowed as the test circuits in this work. They are
referred to as Osc-1 and Osc-2, respectively. Both root-finding
methods, the QZ algorithm and the successive Muller iteration
algorithm, were implemented. The QZ algorithm is applied to
the matrices C(t) and G(t) to solve all the roots of (8). We
integrated the LAPACK QZ routine in our C++ program.

The PSS solutions were simulated with the Cadence Spec-
treRF using a TSMC 0.18um model library; the periodic node
voltages at all time instants were saved in the files generated
by PSS analysis [10]. Because the periodic small-signal model
parameter values were not generated by the SpectreRF simula-
tor, we managed to obtain such parameter values of all active
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Fig. 4. Two oscillator circuits: (a) Cross-coupled oscillator (Osc-1), (b)
Cross-coupled oscillator with bias inductors (Osc-2) [3].
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Fig. 5. Dominant root loci of circuit Osc-1 in (a) and Osc-2 in (b) calculated
by the symbolic method and the QZ method.

TABLE I
PERFORMANCE COMPARISON BETWEEN THE SYMBOLIC METHOD AND

THE QZ METHOD.

Symbolic Method QZ Method
Coeff. Muller dominant- Total
eval. root-finding Total root-finding

time (sec) time (sec) time (sec) time (sec)
Osc-1 0.058 0.006 0.064 0.141

(12 roots)
Osc-2 0.215 0.009 0.224 0.260

(16 roots)

devices by running dc operating-point analysis with manually
assigned the nodal voltages. Then the periodic small-signal
device parameter values were passed to the symbolic program
for generating the characteristic polynomials.

The quasi-static MOSFET small-signal model given in
Fig. 3 was used in dc operating-point analysis and symbolic
analysis. The inductors were modeled with a complete on-chip
π-type model. The capacitors were assumed to have high Q
and modeled ideally.

Shown in Fig. 5 are the dominant root-loci of Osc-1 and
Osc-2 computed by the Muller method and the QZ method.
The periodic steady-state orbits of both circuits were sampled
by 202 points. The roots found by the two methods matched
up to ten significant digits.

 
167 



TABLE II
DETAILS WITH THE SYMBOLIC METHOD

# symbols s-expanded BDD constr. time s-coef. eval.
BDD size (inclu. s-exp) time (s)

Osc-1 69 4,088 0.20 0.058
Osc-2 84 10,675 0.41 0.215
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Fig. 6. The effect of inductors on the oscillator performance: (a) root-
loci for four combinations of L values: (i) Ltop = 0 and Lbot = 0, (ii)
Ltop = 0.8nH and Lbot = 0, (iii) Ltop = 0 and Lbot = 1.8nH , and
(iv) Ltop = 0.8nH and Lbot = 1.8nH; and (b) the corresponding phase
noise curves.

We compared the computational efficiency between the
numerical QZ method and the symbolic method. Shown in
Table I are the time measures of the two methods applied to
the two circuits Osc1 and Osc2. The runtime of the symbolic
method was measured in several parts. The Muller’s method
was used to solve only the dominant roots. At the first
time instant t0, all roots of D(s, t0) = 0 were calculated
and the dominant complex one closest to the jω axis and
with positive imaginary part was chosen. Then the successive
Muller iteration algorithm was applied to successively gen-
erate the dominant root-loci corresponding to the succeeding
time instants. We see that most of the computation time was
spent on calculating the polynomial coefficients, while the time
for dominant root-finding was almost negligible.

For the symbolic method, the two circuits have respectively
69 and 84 symbols. The respective BDD construction time,
BDD size, and the s-coefficient evaluation time are given in
Table II. Since the symbolic BDD structure has quite large
size, its numerical evaluation takes appreciable time. Several
possibilities to improve the numerical evaluation time are by
adopting a better symbol order [7] or by using currently
popular GPU-based computation [15].

In contrast, the QZ method always solves all roots at every
time instant from which the dominant roots are selected. The
measured time includes the matrix build time and the LAPACK
QZ solving time. The matrix sizes for the two oscillators are
respectively 16× 16 and 20× 20.

From the design perspective, we know that the two inductors
Ltop and Lbot added in Osc-2 are intended for reducing the
phase noise. With symbolic analysis, conceptually we can tune
the circuit parameters to visualize the effect on the oscillator
performance. To see this effect, we plotted in Fig. 6(a) four

combination of the values of Ltop and Lbot. The case (i) with
Ltop = 0 and Lbot = 0 corresponds to the topology of Osc-1.
As the inductor values are tuned to appropriate values so that
the LC resonance frequency is at the second harmonic of the
oscillator, we see that the root-loci more closely embrace the
jω axis, which intuitively indicates that the oscillator phase
noise is lowered. The plot in Fig. 6(b) verifies the claim; the
phase noise is the lowest for the case (iv) when Ltop = 0.8nH
and Lbot = 1.8nH .

IV. CONCLUSION

This paper has presented a fully symbolic approach to the
time-varying root-locus analysis of an autonomous oscilla-
tor. Because the TVRL analysis requires repeated numerical
computations of the characteristic roots, a symbolic method
is suitable for this purpose because its data structure is
constructed only once. Besides the computational efficiency,
the symbolic method is advantageous to circuit topology or
parameter optimization.
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